Skip to main content

Use of Fullerenes and Carbon Nanotubes for Fabrication of Efficient Electron Field Emitters

  • Chapter
Perspectives of Fullerene Nanotechnology

Abstract

This chapter presents the recent results in fabrication of efficient electron field emitters using fullerenes and carbon nanotubes. The concept of electron field emitters encompasses nanocrystalline-diamond-coated carbon nanotubes. Carbon nanotubes were found to be efficient electron field emitters by themselves. Diamond coating provides passive protection as well as active enhancement of emission by lowering the electron exit work function. During the presented study both, single-walled (SWNT) and multi-walled (MWNT) carbon nanotubes were used to form emitting arrays of nanotubes. Fullerenes were used as a feedstock for formation of nanocrystalline-diamond coating over the carbon nanotube arrays. Simultaneously with nanotube substrates, an array of W wires was coated with nano-crystalline diamond for the sake of comparison as well as to establish the effects of diamond presence on improvement of electron field emission. In all cases, the presence of diamond significantly improved the characteristics of electron field emission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. Iijima and T. Ichihashi, Nature 363 (1993) 603.

    Article  CAS  Google Scholar 

  2. J. Bernholc, C. Roland and B. I. Yakobson, Curr. Op. Solid State Mater. Sci. 2 (1997) 706.

    Article  CAS  Google Scholar 

  3. D. S. Bethune, C. H. Kiang, M. S. deVries, G. Gorman, R. Savoy, J. Vazquez and R. Beyers, Nature 363 (1993) 605.

    Article  CAS  Google Scholar 

  4. O. M. Kuttel, O. Groening, C. Emmenegger and L. Schlapbach, Appl. Phys. Lett. 73 (1998) 2113.

    Article  CAS  Google Scholar 

  5. J. M. Bonard, F. Maier, T. Stockli, A. Chatelain, W. A. de Heer, J. P. Salvetat and L. Forro, Ultramicroscopy 73 (1998) 7.

    Article  CAS  Google Scholar 

  6. J. M. Bonard, J. P. Salvetat, T. Stockli, W. A. de Heer, L. Forro and A. Chatelain, Appl. Phys. Lett. 73 (1998) 918.

    Article  CAS  Google Scholar 

  7. J. M. Bonard, J. P. Salvetat, T. Stockli, W. A. de Heer, L. Forro and A. Chatelain, Appl. Phys. A 69 (1999) 245.

    CAS  Google Scholar 

  8. Y. Saito, K. Hamaguchi, K. Hata, K. Tohji, A. Kasuya, Y. Nishina, K. Uchida, Y. Tasaka, F. Ikazaki and M. Yumura, Ultramicroscopy 73 (1998) 1.

    Article  CAS  Google Scholar 

  9. W. A. de Heer, J. M. Bonard, T. Stoeckli, A. Chatelain, L. Forro and D. Ugarte, Z. Phys. D: At., Mol. Clusters 40 (1997) 418.

    Article  Google Scholar 

  10. P. G. Collins and A. Zettl, Appl. Phys. Lett. 69 (1996) 1969.

    Article  Google Scholar 

  11. P. G. Collins and A. Zettl, Phys. Rev. B: Condens. Matter 55 (1997) 9391.

    Article  CAS  Google Scholar 

  12. Y. Saito, K. Hamaguchi, T. Nishino, K. Iiata, K. Tohji, A. Kasuya and Y. Nishina, Jpn. J. Appl. Phys., Part 2 36 (1997) L1340.

    Google Scholar 

  13. Y. Saito, K. Hamaguchi, S. Uemura, K. Uchida, Y. Tasaka, F. Ikazaki, M. Yumura, A. Kasuya and Y. Nishina, Appl. Phys. A 67 (1998) 95.

    Article  CAS  Google Scholar 

  14. W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park and J. M. Kim, Appl. Phys. Lett. 75 (1999) 3129.

    Article  CAS  Google Scholar 

  15. P. E. Pehrsson, J. Glesner and A. Morish, Thin Solid Films 212 (1992) 81–89.

    Article  CAS  Google Scholar 

  16. D. M. Gruen, MRS Bull. 23 (9) (1998) 32–35.

    Google Scholar 

  17. R. J. Meliunas, R. P. H. Chang, S. Liu and M. M. Kappes, Appl. Phys. Lett. 59 (26) (1991) 3461–3463.

    Article  Google Scholar 

  18. N. Jiang, B. W. Sun, Z. Zhang and Z. Lin, J. Mater. Res. 9 (10) (1994) 2695–2702.

    Article  CAS  Google Scholar 

  19. X. L. Pen, J. Mater. Res. 9 (6) (1994) 1573–1577.

    Article  Google Scholar 

  20. M. C. Salvadori, J. W. Ager III, I. G. Brown and K. M. Krishnan, Appl. Phys. Lett. 59 (19) (1991) 2386–2388.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Loutfy, R.O., Withers, J.C., Dimitrijevic, S.T. (2002). Use of Fullerenes and Carbon Nanotubes for Fabrication of Efficient Electron Field Emitters. In: Ōsawa, E. (eds) Perspectives of Fullerene Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9598-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-9598-3_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-9600-3

  • Online ISBN: 978-94-010-9598-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics