Skip to main content

Self-assembly of Inorganic Nanotubes Synthesised by the Chemical Transport Reaction

  • Chapter
Perspectives of Fullerene Nanotechnology

Abstract

The chemical transport reaction, known as a standard method for growth of transition metal dichalcogenides, was found to be a successful technique for the synthesis of MoS2 and WS2 inorganic nanotubes. While microtubes usually grow as single tubes, the nanotubes combine to build ropes formed by coaxial or side-by-side growth of primary nanotubes. The nanoropes also grow by self-assembly of the nanotube or by coalescence of single tubes. Association of nanotubes or narrow nanoropes reveals the effect of attractive long-range forces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. Tenne, L. Margulis, M. Genut, G. Hodes, Nature 360 (1992) 444;

    Article  CAS  Google Scholar 

  2. L. Margulis, G. Saltra, R. Tenne, M. Tallanker, Nature 365 (1993) 113;

    Article  CAS  Google Scholar 

  3. R. Tenne, M. Homyonfer, Y. Feldman, Chem. Mater. 10 (1998) 3225;

    Article  Google Scholar 

  4. A. Zak, Y. Feldman, V. Alperovich, R. Rosentsveig and R. Tenne, J. Am. Chem. Soc. 122 (2000) 11108.

    Article  CAS  Google Scholar 

  5. N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie and A. Zettl, Science 269 (1995) 966;

    Article  CAS  Google Scholar 

  6. M. Terrones, Chem. Phys. Lett. 259 (1996) 568.

    Article  CAS  Google Scholar 

  7. W. B. Hu, Y. Q. Zhu, W. K. Hsu, B. H. Chang, M. Terrones, N. Grobert, H. Terrones, J. P. Hare, H. W. Kroto, D. R. M. Walton, Appl. Phys. A 70 (2000) 231.

    Article  CAS  Google Scholar 

  8. Y. Rosenfeld Hacohen, E. Grunbaum, R. Tenne, J. Sloan and J. L. Hutchison, Nature 395 (1998) 336.

    Article  CAS  Google Scholar 

  9. G. Seifert, H. Terrones M. Terrones and T. Frauenheim, Solid State Commun. 115 (2000) 635.

    Article  CAS  Google Scholar 

  10. M. Côté, M. L. Cohen and D. J. Chadi, Phys. Rev. B 58 (1998) R4277.

    Article  Google Scholar 

  11. M. Remskar, Z. Skraba, E Cleton, R. Sanjines and F. Levy, Appl. Phys. Lett. 69 (1996) 351.

    Article  CAS  Google Scholar 

  12. M. Remskar, Z. Skraba, C. Ballif, M. Regula, R. Sanjinés and E Lévy, Adv. Mater. 10 (1998) 246.

    Article  CAS  Google Scholar 

  13. M. Remskar, Z. Skraba, R. Sanjinés and E Lévy, Appl. Phys. Lett. 74 (1999) 633.

    Article  Google Scholar 

  14. M. Remskar, J. Quart. Fullerenes 8 (2000) 175.

    Google Scholar 

  15. M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demsar, P. Stadelmann, F. Levy, D Mihailovic, Science 292 (2001) 479.

    Article  CAS  Google Scholar 

  16. M. S. Dresselhaus, G. Dresselhaus and R. C. Ecklund, “Science of Fullerenes and Carbon Nanotubes”, (Academic Press, 1996 ).

    Google Scholar 

  17. W. Kratschmer, L. D. Lamb, K. Fostiropoulos and D. R. Huffman, Nature 347 (1990) 354.

    Article  Google Scholar 

  18. W. Bronger, “Crystallography and Crystal Chemistry of Materials with Layered Structures”, edited by F. Levy, ( D. Reidel Publishing Company, Dordrecht-Holland, 1976 ).

    Google Scholar 

  19. M. Remskar, Z. Skraba, P. Stadelmann and E Levy, Adv. Mater. 12 (2000) 814.

    Article  CAS  Google Scholar 

  20. M. Remskar, Z. Skraba, R. Sanjinés and E Lévy, Surf. Rev. Leu. 6 (1999) 1283.

    Google Scholar 

  21. M. Remskar, Z. Skraba, E Cléton, R. Sanjinés and E Lévy, Ibid. 5 (1998) 423.

    CAS  Google Scholar 

  22. Y. Golan, C. Drummond, M. Homyonfer, Y. Feldman, R. Tenne and J. Israelachvily, Adv. Mater. 11 (1999) 934.

    Article  CAS  Google Scholar 

  23. M. Chhowalla and G. A. J. Amaratunga, Nature 407 (2000) 164.

    Article  CAS  Google Scholar 

  24. A. Rothschild, A. S. R. Cohen and R. Tenne, Appl. Phys. Leu. 75 (1999) 4025.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Remskar, M., Mrzel, A., Levy, F. (2002). Self-assembly of Inorganic Nanotubes Synthesised by the Chemical Transport Reaction. In: Ōsawa, E. (eds) Perspectives of Fullerene Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9598-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-9598-3_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-9600-3

  • Online ISBN: 978-94-010-9598-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics