Skip to main content

An inhibitor of injury-induced COX-2 transcriptional activation elicits neuroprotection in a brain damage model

  • Chapter
Improved Non-Steroid Anti-Inflammatory Drugs: COX-2 Enzyme Inhibitors

Abstract

The quest to understand the molecular changes in brain injury is providing new ideas that might lead to more effective therapeutic approaches. Early molecular events in brain injury, such as the hydrolysis of membrane phospholipids, can trigger cascades of events which may constitute decision pathways leading to neuronal damage or cell death, or conversely to repair and regeneration. The fundamental problems are to identify which second messengers accumulate, the signals that trigger their production and the pathways that, in turn, they affect in the damaged regions of the brain. In the design of more discriminating pharmacological approaches it is important to understand how intervention at a single point in a signalling pathway will affect the complex web of cellular communications between neurones, and between the neurone, glia and cerebral microvasculature. While the short term survival of the subject in the acute phase of stroke, head injury or epilepsy is obviously of paramount importance, an understanding of the mechanisms which lead to the alterations in synaptic circuitry involved in delayed neurobehavioural disorders such as post-traumatic epilepsy, delayed amnesia, psychosis and dementia could help in designing therapies which promote better long-term recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bazan NG. Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim Biophys Acta. 1970; 218: 1–10.

    PubMed  CAS  Google Scholar 

  2. Nicotera P, Bellomo G, Orrenius S. Calcium-mediated mechanisms in chemically induced cell death. Annu Rev Pharmacol Toxicol. 1992; 32: 449–70.

    PubMed  CAS  Google Scholar 

  3. Siesjö BK, Ingvar M, Westerberg Z. The influence of bicuculline-induced seizures on free fatty acid concentration in cerebral cortex, hippocampus and cerebellum. J Neurochem. 1992; 39: 796–802.

    Google Scholar 

  4. Yoshida S, Harik S, Busto R, Santiso M, Martinez E, Ginsberg MD. Free fatty acids and energy metabolites in ischemic cerebral cortex with noradrenaline depletion. J Neurochem. 1984; 42: 711–7.

    PubMed  CAS  Google Scholar 

  5. Birkle DL, Bazan NG. Effect of bicuculline-induced status epilepticus on prostaglandins and hydroxyeicosatetraenoic acids in rat brain subcellular fractions. J Neurochem. 1987; 48: 1768–78.

    PubMed  CAS  Google Scholar 

  6. Huang SF-L, Sun GY. Acidic phospholipids, diacylglycerols, and free fatty acids in gerbil brain: a comparison of ischemic changes resulting from carotid ligation and decapitation. J Neurosci Res. 1987; 17: 162–7.

    PubMed  CAS  Google Scholar 

  7. Bazan NG. Arachidonic acid (AA) in the modulation of excitable membrane function and at the onset of brain damage. Ann NY Acad Sci. 1989; 559: 1–16.

    PubMed  CAS  Google Scholar 

  8. Katsura K, Rodriguez de Turco EB, Folbergrova J, Bazan NG, Siesjö BK. Coupling among energy failure, loss of ion homeostasis, and phospholipase A2 and C activation during ischemia. J Neurochem. 1993; 61: 1677–84.

    PubMed  CAS  Google Scholar 

  9. Pediconi MF, Rodriguez de Turco EB. Free fatty acid content and release kinetics as manifestations of cerebral lateralization in mouse brain. J Neurochem. 1984; 43: 1–7.

    PubMed  CAS  Google Scholar 

  10. Yasuda H, Kishiro K, Izumi N, Nakanishi M. Biphasic liberation of arachidonic and stearic acids during cerebral ischemia. J Neurochem. 1985; 45: 168–72.

    PubMed  CAS  Google Scholar 

  11. Katayama Y, Kawamata T, Maeda T, Ishikdawa K, Tsubokawa T. Inhibition of the early phase of free fatty acid liberation during cerebral ischemia by excitatory amino acid antagonist administered by microdialysis. Brain Res. 1994; 635: 331–4.

    PubMed  CAS  Google Scholar 

  12. Farooqui AA, Hirashima Y, Horrocks LA. Brain phospholipases and their role in signal transduction. Adv Exp Med Biol. 1992; 318: 11–25.

    PubMed  CAS  Google Scholar 

  13. Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science. 1992; 258: 607–14.

    PubMed  CAS  Google Scholar 

  14. Shohami E, Shapira Y, Reisfeld N, Yedgar S. Brain phospholipase A2 is activated after experimental closed head injury in the rat. J Neurochem. 1989; 53: 1541–6.

    PubMed  CAS  Google Scholar 

  15. Rordorf G, Uemura Y, Bonventre JV. Characterization of phospholipase A2 (PLA2) activity in gerbil brain: enhanced activities of cytosolic, mitochondrial, and microsomal forms after ischemia and reperfusion. J Neurosci. 1991; 11: 1829–36.

    PubMed  CAS  Google Scholar 

  16. Bonventre JV, Koroshetz WJ. Phospholipase A2 (PLA2) activity in gerbil brain: characterization of cytosolic and membrane-associated forms and effects of ischemia and reperfusion on enzymatic activity. J Lipid Mediat. 1993; 6: 457–71.

    PubMed  CAS  Google Scholar 

  17. Aveldano MI, Bazan NG. Rapid production of diacylglycerols enriched in 20:4 and stearate during early brain ischemia. J Neurochem. 1975; 25: 919–20.

    PubMed  CAS  Google Scholar 

  18. Ikeda M, Yoshida S, Busto R, Santiso M, Ginsberg MD. Polyphosphoinositides as a probable source of brain free fatty acids accumulated at the onset of ischemia. J Neurochem. 1986; 47: 123–32.

    PubMed  CAS  Google Scholar 

  19. Reddy TS, Bazan NG. Arachidonic acid, stearic acid and diacylglycerol accumulation correlates with the loss of phosphatidylinositol 4,5-bisphosphate in cerebrum 2 seconds after electroconvulsive shock. Complete reversion of changes 5 minutes after stimulation. J Neurosci Res. 1987; 18: 449–55.

    PubMed  CAS  Google Scholar 

  20. Rodriguez de Turco EB, Bazan NG. Changes in free fatty acids and diglycerides in mouse brain at birth and during anoxia. J Neurochem. 1983; 41: 794–800.

    Google Scholar 

  21. Bazan NG, Allan G, Rodriguez de Turco EB. Role of phospholipase A2 and membrane-derived lipid second messengers in excitable membrane function and transcriptional activation of genes: Implications in cerebral ischemia and neuronal excitability. Prog Brain Res. 1993; 96: 247–57.

    PubMed  CAS  Google Scholar 

  22. Rodriguez de Turco EB, Droy-Lefaix MT, Bazan NG. Decreased electroconvulsive shock-induced diacylglycerols and free fatty acid accumulation in the rat brain by Ginkgo biloba extracts (EGB 761): Selective effect in hippocampus as compared with cerebral cortex. J Neurochem. 1993; 61: 1438–44.

    Google Scholar 

  23. Sun GY. Contributions to arachidonic acid release in mouse cerebrum by the phosphoinositidephospholipase C and phospholipase A2 pathways. Adv Exp Med Biol. 1992; 318: 103–14.

    PubMed  CAS  Google Scholar 

  24. Sun GY, Lu FL, Lin SE, Ko MR. Decapitation ischemia-induced release of free fatty acids in mouse brain. Relationship with diacylglycerols and lysophospholipids. Mol Chem Neuropathol. 1992; 17: 39–50.

    PubMed  CAS  Google Scholar 

  25. Umemura A, Mabe H, Nagai H, Sugino F. Action of phospholipase A, and C on free fatty acid release during complete ischemia in rat cortex. Effect of phospholipase C inhibitor and N-methylD-aspartate antagonist. J Neurosurg. 1992; 76: 648–51.

    PubMed  CAS  Google Scholar 

  26. Berridge MJ. Inositol trisphosphate and calcium signalling. Nature. 1993; 361: 315–25.

    PubMed  CAS  Google Scholar 

  27. Dumuis A, Sebben M, Haynes J-P, Bockaert J. NMDA receptors activate the arachidonic acid cascade system in striatal neurons. Nature. 1988; 336: 68–70.

    PubMed  CAS  Google Scholar 

  28. Lazarewicz JW, Wroblewski JT, Palmer ME, Costa E. Activation of N-methyl-D-aspartatesensitive glutamate receptors stimulates arachidonic acid release in primary cultures of cerebellar granule cells. Neuropharmacology. 1988; 27: 765–9.

    PubMed  CAS  Google Scholar 

  29. Pellerin L, Wolfe LS. Release of arachidonic acid by NMDA-receptor activation in the rat hippocampus. Neurochem Res. 1991; 16: 983–9.

    PubMed  CAS  Google Scholar 

  30. Sanfeliu C, Hunt A, Patel AJ. Exposure to N-methyl-D-aspartate increases release of arachidonic acid in primary cultures of rat hippocampal neurons and not in astrocytes. Brain Res. 1990; 256: 241.

    Google Scholar 

  31. Yoshijara Y, Watanabe Y. Translocation of phospholipase A2 from cytosol to membranes in rat brain induced by calcium ions. Biochem Biophys Res Commun. 1990; 170: 484–90.

    Google Scholar 

  32. Fujimori Y, Murakami M, Kim DK et al. Immunochemical detection of arachidonoyl-preferential phospholipase A2. J Biochem (Tokyo). 1992; 111: 54–60.

    CAS  Google Scholar 

  33. Kudo I, Murakami M, Hara S, Inoue K. Mammalian non-pancreatic phospholipases A2. Biochem Biophys Acta. 1993; 1170: 217–31.

    PubMed  CAS  Google Scholar 

  34. Axelrod J, Burch RM, Jelsema CL. Receptor-mediated activation of phospholipase AZ via GTPbinding proteins: Arachidonic acid and its metabolites as second messengers. Trends Neurochem Sci. 1988; 11: 117–23.

    CAS  Google Scholar 

  35. Jelsema CL, Axelrod J. Stimulation of phospholipase Az activity in bovine rod outer segment by the ß gamma subunits of transducin and its inhibition by the a subunit. Proc Natl Acad Sci USA. 1987; 84: 3623–7.

    PubMed  CAS  Google Scholar 

  36. Peitsch MC, Borner C, Tschopp J. Sequence similarity of phospholipase A2 activating protein and the G protein beta-subunits: a new concept of effector protein activation in signal transduction? Trends Biochem Sci. 1993; 18: 292–3.

    PubMed  CAS  Google Scholar 

  37. Flower RJ. Lipocortin and the mechanism of action of the glucocorticoids. Br J Pharmacol. 1988; 79: 987–1015.

    Google Scholar 

  38. Strijbos PJLM, Tilders FJN, Carey F, Forder RA, Bothwell NJ. Localization of immunoreactive lipocortin-1 in the brain and pituitary gland of the rat. Brain Res. 1991; 553: 249–60.

    PubMed  CAS  Google Scholar 

  39. Bothwell NJ, Belton JK. Involvement of interleukin-1 and lipocortin-1 in ischaemic brain damage. Cerebrovasc Brain Metab Rev. 1993; 5: 178–98.

    Google Scholar 

  40. Belton JK, Strijbos PJLM, O’Shaughnessey CT et al. Lipocortin-1 is an endogenous inhibitor of ischemic damage in the rat brain. J Exp Med. 1991; 174: 305–10.

    Google Scholar 

  41. Black MD, Carey F, Crosman AR, Belton JK, Bothwell N. Lipocortin-1 inhibits NMDA receptor-mediated neuronal damage in the striatum of the rat. Brain Res. 1992; 585: 135–40.

    PubMed  CAS  Google Scholar 

  42. Shimizu T, Wolfe LS. Arachidonic acid cascade and signal transduction. J Neurochem. 1990; 55: 1–15.

    PubMed  CAS  Google Scholar 

  43. Volterra A, Trotti D, Cassutti P et al. A role for the arachidonic acid cascade in fast synaptic modulation: ion channels and transmitter uptake systems as target proteins. Adv Exp Med Biol. 1992; 318: 147–58.

    PubMed  CAS  Google Scholar 

  44. Ordway RW, Singer JJ, Walsh JV Jr. Direct regulation of ion channels by fatty acids. Trends Neurosci. 1991; 14: 96.

    PubMed  CAS  Google Scholar 

  45. Bazan NG. Involvement of arachidonic acid and platelet-activating factor in the response of the nervous system to ischemia and convulsions. In: Bazan NG, editor. Lipid Mediators in Ischemic Brain Damage and Experimental Epilepsy. New Trends in Lipid Mediators. Basel: Karger; 1990: 241–52.

    Google Scholar 

  46. Yu ACH, Chan PH, Fishman RA. Effects of arachidonic acid on glutamate and gammaaminobutyric acid uptake in primary culture of rat cerebral cortical astrocytes and neurons. J Neurochem. 1986; 47: 1181–9.

    PubMed  CAS  Google Scholar 

  47. Barbour B, Szatkowski M, Ingledew N, Attwell D. Arachidonic acid induces a prolonged inhibition of glutamate uptake into glial cells. Nature. 1989; 342: 918–20.

    PubMed  CAS  Google Scholar 

  48. Dorman RV, Hamm TF, Damron DS, Freeman EJ. Modulation of glutamate release from hippocampal mossy fiber nerve endings by arachidonic acid and eicosanoids. Adv Exp Med Biol. 1992; 318: 121–36.

    PubMed  CAS  Google Scholar 

  49. Zhange L, Dorman RV. Synergistic potentiation of glutamate release by arachidonic acid and oleoyl-acetyl-glycerol. Brain Res Bull. 1993; 32: 437–41.

    Google Scholar 

  50. Domanska-Janik K. Unsaturated fatty acids induce inhibition of the A 1-adenosine receptor in rat brain membranes. Neuro Report. 1992; 4: 451–53.

    Google Scholar 

  51. Miller B, Sarantis M, Traynelis SF, Attwell D. Potentiation of NMDA receptor currents by arachidonic acid. Nature. 1992; 355: 722–5.

    PubMed  CAS  Google Scholar 

  52. Petrou S, Ordway RW, Singer JJ, Walsh JV Jr. A putative fatty acid-binding domain of the NMDA receptor. Trends Biochem Sci. 1993; 18: 41–2.

    PubMed  CAS  Google Scholar 

  53. Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippo-campus. Nature. 1993; 361: 31–9.

    PubMed  CAS  Google Scholar 

  54. Piomelli D. Eicosanoids in synaptic transmission. Crit Rev Neurobiol. 1994; 8: 65–83.

    PubMed  CAS  Google Scholar 

  55. Gaudet RJ, Alam I, Levine L. Accumulation of cyclooxygenase products of arachidonic acid metabolism in gerbil brain during reperfusion after bilateral common carotid artery occlusion. J Neurochem. 1981; 35: 653.

    Google Scholar 

  56. Kempski O, Shohami E, von Lubitz D, Hallenbeck JM, Feuerstein G. Postischemic production of eicosanoids in gerbil stroke. Stroke. 1987; 18: 111–9.

    PubMed  CAS  Google Scholar 

  57. Moskowitz MA, Kiwak KJ, Hekiman K, Levine L. Synthesis of compounds with properties of leukotrienes C, and D4 in gerbil brains after ischemia and reperfusion. Science. 1984; 224: 886.

    PubMed  CAS  Google Scholar 

  58. Dempsey RJ, row MW, Meyer K, Cowen DE, Tai HH. Development of cyclooxygenase and lipoxygenase metabolites of arachidonic acid after transient cerebral ischemia. J Neurosurg. 1986; 64: 118–24.

    PubMed  CAS  Google Scholar 

  59. Moncada S, Vane JR. Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane AZ and prostacyclin. Pharmacol Rev. 1979; 30: 293–331.

    Google Scholar 

  60. Unterberg A, Wahl M, Hammerson F, Baethman A. Permeability and vasomotor response of cerebral vessels during exposure to arachidonic acids. Acta Neuropathol (Berl). 1987; 73: 209–11.

    CAS  Google Scholar 

  61. Baba T, Black KL, Ikezaki K, Chen KN, Becker DR Intracarotid infusion of leukotriene C4 selectively increases blood-brain barrier permeability after focal ischemia in rats. J Cerebr Blood Flow Metab. 1991; 11: 638–43.

    CAS  Google Scholar 

  62. Herschman HR. Regulation of prostaglandin synthase-1 and prostaglandin synthase-2. Cancer Metastatis Rev. 1994; 13: 241–56.

    CAS  Google Scholar 

  63. Vane JR, Botting RM. A better understanding of anti-inflammatory drugs based on isoforms of cyclooxygenase (COX-1 and COX-2). Adv Prost Thromb Leuk Res. 1995; 23: 41–8.

    CAS  Google Scholar 

  64. Kujubu DA, Fletcher BS, Varnum BC, Lim RW, Herschman HR. TIS10, a phorbol ester tumor promoter-inducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin synthase/cyclooxygenase homologue. J Biol Chem. 1991; 266: 12866–72.

    PubMed  CAS  Google Scholar 

  65. Xie W, Chipman JG, Robertson DL, Erikson RL, Simmons DL. Expression of a mitogenresponsive gene encoding prostaglandin synthase is regulated by mRNA splicing. Proc Natl Acad Sci USA. 1991; 88: 2692–6.

    PubMed  CAS  Google Scholar 

  66. Yamagata K, Andreasson KI, Kaufmann WE, Barnes CA, Worley PF. Expression of a mitogeninducible cyclooxygenase in brain neurons: Regulation by synaptic activity and glucocorticoids. Neuron. 1993; 11: 371–86.

    PubMed  CAS  Google Scholar 

  67. Breder CD, Dewitt D, Kraig RP. Characterization of inducible cyclooxygenase in rat brain. J Comp Neurol. 1995; 355: 296–315.

    PubMed  CAS  Google Scholar 

  68. Henson PM. Release of vasoactive amines from rabbit platelets induced by antiplatelet antibody in the presence and absence of complement. J Immunol. 1970; 104: 934.

    Google Scholar 

  69. Benveniste J, Henson PM, Cochrane CG. Leukocyte-dependent histamine release from rabbit platelets. The role of IgE, basophils, and platelet-activating factor. J Exp Med. 1972; 136: 1356–77.

    PubMed  CAS  Google Scholar 

  70. Braquet P, Touqui L, Shen TY, Vargaftig BB. Perspectives in platelet-activating factor research. Pharmacol Rev. 1987; 39: 97–145.

    PubMed  CAS  Google Scholar 

  71. Prescott SM, Zimmerman GA, McIntyre TM. Platelet-activating factor. J Biol Chem. 1990; 265: 17381–4.

    PubMed  CAS  Google Scholar 

  72. Bussolino F, Soldi R, Arese M, Jaranowska A, Sogos V, Gremo F. Multiple roles of platelet-activating factor in the nervous system. Neurochem Int. 1995; 26: 425 33.

    Google Scholar 

  73. Kumar R, Harvey S, Kester N, Hanahan D, Olsen M. Production and effects of platelet-activating factor in the rat brain. Biochim Biophys Acta. 1988; 963: 375–83.

    PubMed  CAS  Google Scholar 

  74. Tiberghein C, Laurent L, Junier MP, Dray E A competitive receptor binding assay for platelet-activating factor (PAF): quantification of PAF in rat brain. J Lipid Mediat. 1991; 3: 249–66.

    Google Scholar 

  75. Bussolino F, Torelli S, Stefanini E, Gremo F. Platelet-activating factor production occurs through stimulation of cholinergic and dopaminergic receptors in the chick retina. J Lipid Mediat. 1989; 1: 283–8.

    PubMed  CAS  Google Scholar 

  76. Panetta T, Marcheselli VL, Braquet P, Spinnewyn B, Bazan NG. Effects of a platelet-activating factor antagonist (BN 52021) on free fatty acids, diacylglycerols, polyphosphoinositides and blood flow in the gerbil brain. Inhibition of ischemia-reperfusion induced cerebral injury. Biochem Biophys Res Commun. 1987; 149: 580–7.

    PubMed  CAS  Google Scholar 

  77. Sogos V, Bussolino F, Pilia E, Torelli S, Gremo F. Acetylcholine-induced production of platelet-activating factor by human fetal brain cells in culture. J Neurosci Res. 1990; 27: 706–11.

    PubMed  CAS  Google Scholar 

  78. Goracci G, Francesangeli E. Properties of PAF-synthesizing phosphocholinetransferase and evidence for lysoPAF acetyltransferase activity in brain. Lipids. 1991; 26: 986–91.

    PubMed  CAS  Google Scholar 

  79. Blank ML, Smith ZL, Fitzgerald V, Snyder E The CoA-independent transacylase in PAF biosynthesis: tissue distribution and molecular species selectivity. Biochim Biophys Acta. 1995; 1254: 295–301.

    Google Scholar 

  80. Lee T-C, Malone B, Snyder F. Formation of 1-alkyl-2-acetyl-sn-glycerols via the de novo biosynthetic pathway for platelet-activating factor. J Biol Chem. 1988; 263: 1755–60.

    PubMed  CAS  Google Scholar 

  81. Deshpande JK, Siesjö BK, Wieloch T. Calcium accumulation and neuronal damage in the rat hippocampus following cerebral ischemia. J Cerebr Blood Flow Metab. 1987; 7: 89–95.

    CAS  Google Scholar 

  82. Francescangeli E, Goracci G. The de novo biosynthesis of platelet-activating factor in rat brain. Biochem Biophys Res Commun. 1989; 161: 107–12.

    PubMed  CAS  Google Scholar 

  83. Marcheselli VL, Rossowska M, Domingo MT, Braquet P, Bazan NG. Distinct platelet-activating factor binding sites in synaptic endings and in intracellular membranes of rat cerebral cortex. J Biol Chem. 1990; 265: 9140–5.

    PubMed  CAS  Google Scholar 

  84. Honda Z, Nakamura M, Miki I et al. Cloning by functional expression of platelet-activating factor receptor from guinea-pig lung. Nature. 1991; 394: 342–6.

    Google Scholar 

  85. Kunz D, Gerard NP, Gerard C. The human leukocyte PAF receptor. cDNA cloning, cell surface expression and construction of a novel epitope-bearing analog. J Biol Chem. 1992; 267: 9101–6.

    PubMed  CAS  Google Scholar 

  86. Sugimoto T, Tsuchimochi H, McGregor CG, Mutoh H, Shimizu T, Kurachi Y. Molecular cloning and characterization of the platelet-activating factor receptor from human heart. Biochem Biophys Res Commun. 1992; 189: 617–24.

    PubMed  CAS  Google Scholar 

  87. Sasaki Y, Usui T, Tanaka I et al. Cloning and expression of a cDNA for rat prostacyclin receptor. Biochim Biophys Acta. 1994; 1224: 601–5.

    PubMed  Google Scholar 

  88. Mutoh H, Bito H, Minami M et al. Two different promoters direct expression of two distinct forms of mRNA of human platelet-activating factor receptor. FEBS Lett. 1993; 322: 129–34.

    PubMed  CAS  Google Scholar 

  89. Bito H, Nakamura M, Honda Z et al. Platelet-activating factor (PAF) receptor in rat brain: PAF mobilizes intracellular Cat’ in hippocampal neurons. Neuron. 1992; 9: 285–94.

    PubMed  CAS  Google Scholar 

  90. Ali H, Richardson RM, Tomhave ED, DuBose RA, Haribabu B, Snyderman R. Regulation of stably transfected platelet activating factor receptor in RBL-2H3 cells. Role of multiple G proteins and receptor phosphorylation. J Biol Chem. 1994; 269: 24557–63.

    PubMed  CAS  Google Scholar 

  91. Honda Z, Takano T, Hirose N et al. Gq pathway desensitizes chemotactic receptor-induced calcium signaling via inositol trisphosphate receptor down-regulation. J Biol Chem. 1995; 270: 4840–4.

    PubMed  CAS  Google Scholar 

  92. Honda Z, Takano T, Gotoh Y, Nishida E, Ito K, Shimizu T. Transfected platelet-activating factor receptor activates mitogen-activated protein (MAP) kinase and MAP kinase in Chinese hamster ovary cells. J Biol Chem. 1994; 269: 2307–15.

    PubMed  CAS  Google Scholar 

  93. Komecki E, Ehrlich YH. Neuroregulatory and neuropathological actions of the etherphospholipid platelet-activating factor. Science. 1988; 240: 1792–4.

    Google Scholar 

  94. Kuruvilla A, Pielop C, Shearer WT. Platelet-activating factor induces the tyrosine phosphorylation and activation of phospholipase C-yl, fyn and lyn kinases, and phosphatidylinositol 3-kinase in a human B cell line. J Immunol. 1994; 153: 5433–42.

    PubMed  CAS  Google Scholar 

  95. Squint() SP, Block AL, Braquet P, Bazan NG. Platelet-activating factor stimulates a Fos/Jun/AP1 transcriptional signaling system in human neuroblastoma cells. J Neurosci Res. 1989; 24: 558–66.

    Google Scholar 

  96. Pan Z, Kravchenko VV, Ye RD. Platelet activating factor stimulates transcription of the heparin-binding epidermal growth factor-like growth factor in monocytes. Correlation with an increased kappa B binding activity. J Biol Chem. 1995; 270: 7787–90.

    PubMed  CAS  Google Scholar 

  97. Mazer B, Domenico J, Sawami H, Gelfand EW. Platelet-activating factor induces an increase in intracellular calcium and expression of regularity genes in human B lymphoblastoma cells. J Immunol. 1994; 146: 1914–20.

    Google Scholar 

  98. Smith CS, Shearer WT. Activation of NF-kappa B and immunoglobulin expression in response to platelet-activating factor in a human B cell line. Cell Immunol. 1994; 155: 292–303.

    PubMed  CAS  Google Scholar 

  99. Dell’Albani P, Condorelli DF, Mudo G, Amico C, Bindoni M, Belluardo N. Platelet-activating factor and its methoxy analogue ET-18-OCH3 stimulate immediate-early gene expression in rat astroglial cultures. Neurochem Int. 1993; 22: 567–74.

    Google Scholar 

  100. Tripathi Y, Kandala J, Guntaka R, Lim R, Shukla S. Platelet-activating factor induces expression of early response genes c-fos and TIS-1 in human epidermoid carcinoma-432 cells. Life Sci. 1991; 49: 1761–7.

    PubMed  CAS  Google Scholar 

  101. Mutoh H, Ishii S, Izumi T, Kato S, Shimizu T. Platelet-activating factor (PAF) positively auto-regulates the expression of human PAF receptor transcript 1 (leukocyte-type) through NF-kappa B. Biochem Biophys Res Commun. 1994; 205: 1137–42.

    PubMed  CAS  Google Scholar 

  102. Shirasaki H, Adcock IM, Kwon OJ, Nishikawa M, Mak JC, Barnes PJ. Agonist-induced up-regulation of platelet-activating factor receptor messenger RNA in human monocytes. Eur J Pharmacol. 1994; 268: 263–6.

    PubMed  CAS  Google Scholar 

  103. Yokoyama C, Tanabe T. Cloning of the human gene encoding prostaglandin endoperoxide synthase and primary structure of the enzyme. Biochem Biophys Res Commun. 1989; 165: 888–94.

    PubMed  CAS  Google Scholar 

  104. Kraemer SA, Meade EA, DeWitt DL. Prostaglandin endoperoxide synthase gene structure: identification of the transcriptional start site and 5’-flanking regulatory sequences. Arch Biochem Biophys. 1992; 293: 391–400.

    PubMed  CAS  Google Scholar 

  105. Fletcher BS, Kujubu DA, Perrin DM, Herschman HR. Structure of the mitogen-inducible TIS 10 gene and demonstration that the encode protein is a functional prostaglandin synthase. J Biol Chem. 1992; 267: 4338–44.

    PubMed  CAS  Google Scholar 

  106. Xie W, Merril JR, Bradshaw WS, Simmons DL. Structural determination and promoter analysis of the chicken mitogen-inducible prostaglandin G/H synthase gene and genetic mapping of the murine homolog. Arch Biochem Biophys. 1994; 300: 247–52.

    Google Scholar 

  107. Appleby SB, Ristimaki A, Neilson K, Narko K, Hla T. Structure of the human cyclo-oxygenase2 gene. Biochem J. 1994; 302: 723–7.

    PubMed  CAS  Google Scholar 

  108. Tazawa R, Xu XM, Wu KK, Wang LH. Characterization of the genomic structure, chromosomal location and promoter of human prostaglandin H synthase-2 gene. Biochem Biophys Res Commun. 1994; 203: 190–9.

    PubMed  CAS  Google Scholar 

  109. Sirois J, Richards JS. Transcriptional regulation of the rat prostaglandin endoperoxide synthase 2 gene in granulosa cells. Evidence for the role of a cis-acting C/EBP beta promoter element. J Biol Chem. 1993; 268: 21913–8.

    Google Scholar 

  110. Bazan NG, Fletcher BS, Herschman HR, Mukherjee PK. Platelet-activating factor and retinoic acid synergistically activate the inducible prostaglandin synthase gene. Proc Natl Acad Sci USA. 1994; 91: 5252–6.

    PubMed  CAS  Google Scholar 

  111. Babb TL, Leib JP, Brown WJ, Pretorius J, Crandell PH. Distribution of pyramidal cell density and hyperexcitability in the epileptic human hippocampal formation. Epilepsia. 1984; 25: 71–9.

    Google Scholar 

  112. Bazan NG, Politi E, Rodriguez de Turco EB. Endogenous pools of arachidonic acid-enriched membrane lipids in cryogenic brain injury. In: Go KG, Baethmann A, editors. Recent Progress in the Study and Therapy of Brain Edema. New York: Plenum; 1984: 203–12.

    Google Scholar 

  113. Hurst JS, Bazan HE. The platelet-activating factor precursor of the injured cornea is selectively implicated in arachidonate and eicosanoid release. Curr Eye Res. 1993; 12: 655–63.

    PubMed  CAS  Google Scholar 

  114. Bazan HEP, Tao Y, Bazan NG. Platelet activating factor induces collagenase expression in corneal epithelium cells. Proc Natl Acad Sci USA. 1993; 90: 8672–82.

    Google Scholar 

  115. Tao Y, Bazan HEP, Bazan NG. Platelet-activating factor (PAF) induces expression of the urokinase type, but not the tissue type plasminogen activator in the corneal epithelium. Invest Ophthalmol Vis Sci. 1994; 35 (Suppl.):S 1457.

    Google Scholar 

  116. Tao Y, Bazan HEP, Bazan NG. Platelet-activating factor (PAF) increases prostaglandin synthase-2 (COX-2) gene expression in corneal epithelium. Invest Ophthalmol Vis Sci. 1995: 36: S573.

    Google Scholar 

  117. Tao Y, Bazan HEP, Bazan NG. Platelet-activating factor induces the metalloproteinase-1 and -9 but not -2 or -3, in the corneal epithelium. Invest Ophthalmol Vis Sci. 1995; 36: 345–54.

    PubMed  CAS  Google Scholar 

  118. Fini ME, Girard MT, Matsubara M. Collagenolytic/gelatinolytic enzymes in cornea wound healing. Acta Ophthalmol. I992;202(Suppl.):26–33.

    Google Scholar 

  119. Clohisy JC, Connolly TJ, Bergman KD, Quinn CO, Partridge NC. Prostanoid-induced expression of matrix metalloproteinase- I mRNA in rat osteosarcoma cells. Endocrinology. 1994; 135: 1447–54.

    PubMed  CAS  Google Scholar 

  120. Mertz PM, DeWitt DL, Stetler-Stevenson WG, Wahl LM. Interleukin 10 suppression of monocyte prostaglandin H synthase-2. Mechanisms of inhibition of prostaglandin-dependent matrix metalloproteinase production. J Biol Chem. 1994; 269: 21322–29.

    PubMed  CAS  Google Scholar 

  121. Ito A, Nose T, Takahashi S, Mori Y. Cyclooxygenase inhibitors augment the production of pro-matrix metalloproteinase-9 (progelatinase B) in rabbit articular chondrocytes. FEBS Lett. 1995;360:75 —9.

    Google Scholar 

  122. Salvatori R, Guidon PT Jr, Rapuano BE, Bockman RS. Prostaglandin El inhibits collagenase gene expression in rabbit synoviocytes and human fibroblasts. Endocrinology. 1992; 131: 21–8.

    PubMed  CAS  Google Scholar 

  123. Clark GD, Happel LT, Zorumski CF, Bazan NG. Enhancement of hippocampal excitatory synaptic transmission by platelet-activating factor. Neuron. 1992; 9: 1211–6.

    PubMed  CAS  Google Scholar 

  124. Kato K, Clark GD, Bazan NG, Zorumski CF. Platelet-activating factor as a potential retrograde messenger in CAI hippocampal long-term potentiation. Nature. 1994; 367: 179–82.

    Google Scholar 

  125. Izquierdo I, Fin C, Schmitz PK et al. Memory enhancement by intrahippocampal, intraamygdala, or intraentorhinal infusion of platelet-activating factor measured in an inhibitory avoidance task. Proc Natl Acad Sci USA. 1995; 92: 5047–51.

    PubMed  CAS  Google Scholar 

  126. Jerusalinsky D, Quillfeldt JA, Walz R, Da Silva R, Medina JH, Izquierdo I. Post-training intrahippocampal infusion of protein kinase C inhibitors causes amnesia in rats. Behav Neurol Biol. 1994; 61: 107–9.

    CAS  Google Scholar 

  127. Korol DL, Abel TW, Church LT, Barnes CA, McNaughton BL. Hippocampal synaptic enhancement and spatial learning in the Morris swim task. Hippocampus. 1993; 3: 127–32.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers and William Harvey Press

About this chapter

Cite this chapter

Bazan, N.G., Allan, G., Marcheselli, V.L. (1996). An inhibitor of injury-induced COX-2 transcriptional activation elicits neuroprotection in a brain damage model. In: Vane, J., Botting, J., Botting, R. (eds) Improved Non-Steroid Anti-Inflammatory Drugs: COX-2 Enzyme Inhibitors. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9029-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-9029-2_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-9031-5

  • Online ISBN: 978-94-010-9029-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics