Skip to main content

Abstract

The conversion of arachidonic acid to prostaglandin (PG) H2 is catalysed by PG-endoperoxide synthase (PGHS) which exhibits both cyclooxygenase (COX) and peroxidase activities1. PGH2 is further metabolized by other enzymes to various prostanoids (PGs, prostacyclin and thromboxane A2). Two isozymes of PGHS exist, referred to as PGHS-1 and PGHS-2 or COX-1 and COX-22. COX-1 is a constitutive enzyme present in almost all cell types3, and is the major isoform found in gastrointestinal tissue4. Prostanoid production by COX-1 is involved in physiological functions such as vascular homeostasis, control of kidney function and gastric cytoprotection2. COX-2 is induced in a more restricted, cell-specific fashion by mitogenic and inflammatory stimuli5–12.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. DeWitt DL. Prostaglandin endoperoxide synthase: regulation of enzyme expression. Biochim Biophys Acta. 1991; 1083: 121–34.

    PubMed  CAS  Google Scholar 

  2. Smith WL. Prostanoid biosynthesis and mechanisms of action. Am J Physiol. I992; 263: F181–91.

    Google Scholar 

  3. Simmons DL, Xie W, Chipman JG, Evett GE. Multiple cyclooxygenases: cloning of a mitogeninducible form. In: Bailey JM, editor. Prostaglandins, Leukotrienes, Lipoxins, and PAF. New York: Plenum Press; 1991: 67–78.

    Google Scholar 

  4. DeWitt DL, Smith WL. Primary structure of prostaglandin G/H synthase from sheep vesicular gland determined from the complementary DNA sequence. Proc Nat] Acad Sci USA. 1988; 85: 1412–6.

    Article  CAS  Google Scholar 

  5. Kujubu DA, Fletcher BS, Vamum BC, Lim RW, Hershman HR. TISIO, a phorbol ester tumor promoter inducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin synthase/cyclooxygenase homologue. J Biol Chem. 1991; 268: 9049–54.

    Google Scholar 

  6. Fletcher BS, Kujubu DA, Perrin DM, Herschman HR. Structure of the mitogen-inducible TIS10 gene and demonstration that the TIS 10-encoded protein is a functional prostaglandin G/H synthase. J Biol Chem. 1992; 267: 4338–44.

    PubMed  CAS  Google Scholar 

  7. O’Banion MK, Winn VD, Yung DA. cDNA cloning and functional activity of a glucocorticoidregulated inflammatory cyclooxygenase. Proc Natl Acad Sci USA. 1992; 89: 4888–92.

    Article  PubMed  Google Scholar 

  8. Lee SH, Soyoola E, Chanmugam Pet al. Selective expression of mitogen-inducible cyclooxygenase in macrophages stimulated with lypopolysaccharide. J Biol Chem. 1992; 25934–8.

    Google Scholar 

  9. O’Sullivan MG, Chilton FH, Huggins EM, McCall CE. Lipopolysaccharide priming of alveolar macrophages for enhanced synthesis of prostanoids involves induction of a novel prostaglandin H synthase. J Biol Chem. 1992; 267: 14547–50.

    PubMed  Google Scholar 

  10. O’Sullivan MG, Huggins EM, Meade EA, DeWitt DL, McCall CE. Lipopolysaccharide induces prostaglandin H synthase-2 in alveolar macrophages. Biochim Biophys Res Commun. 1992; 187: 1123–7.

    Article  Google Scholar 

  11. Hempel SL, Monick MM, Hunninghake GW. Lypopolysaccharide induces prostaglandin H synthase-2 protein and mRNA in human alveolar macrophages and blood monocytes. J Clin Invest. 1994; 93: 391–6.

    Article  PubMed  CAS  Google Scholar 

  12. Patrignani P, Panara MR, Greco A et al. Biochemical and pharmacological characterization of the cyclooxygenase activity of human blood prostaglandin endoperoxide synthases. J Pharmacol Exp Ther. 1994; 271: 1705–12.

    PubMed  CAS  Google Scholar 

  13. Vane JR. Inhibition of prostaglandins as a mechanism of action for aspirin-like drugs. Nature New Biol. 1971; 231: 232–5.

    PubMed  CAS  Google Scholar 

  14. Vane JR. Towards a better aspirin. Nature. 1994; 367: 215–6.

    Article  PubMed  CAS  Google Scholar 

  15. Jones DA, Carlton DP, McIntyre TM, Zimmerman GA, Prescott SM. Molecular cloning of human prostaglandin endoperoxide synthase type II and demonstration of expression in response to cytokines. J Biol Chem. 1993; 268: 9049–54.

    PubMed  CAS  Google Scholar 

  16. Meade EA, Smith WL, DeWitt DL. Differential inhibition of prostaglandin endoperoxide synthase (cyclooxygenase) isozymes by aspirin and other non-steroidal anti-inflammatory drugs. J Biol Chem. 1993; 268: 6610–4.

    PubMed  CAS  Google Scholar 

  17. Laneuville O, Breuer DK, DeWitt DL, Hla T, Funk CD, Smith WL. Differential inhibition of human prostaglandin endoperoxide H synthase-1 and -2 by nonsteroidal antiinflammatory drugs. J Pharmacol Exp Ther. 1994; 271: 927–34.

    PubMed  CAS  Google Scholar 

  18. Mitchell JA, Akarasereenont P, Thiemermann C, Flower RJ, Vane JR. Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. Proc Natl Acad Sci USA. 1993; 90: 11693–7.

    Article  PubMed  CAS  Google Scholar 

  19. Kutchera WA, Jones DA, Maclouf J, Zimmerman GA, McIntyre TM, Prescott SM. Regulation of expression of prostaglandin H synthase in human endothelial cells and macrophages. Circulation. 1993; 88: 1–621.

    Google Scholar 

  20. Patrono C, Ciabattoni G, Patrignani P et al. Clinical pharmacology of platelet cyclooxygenase inhibition. Circulation. 1985; 72: 1177–84.

    Article  PubMed  CAS  Google Scholar 

  21. Roth GJ, Stanford N, Majerus PW. Acetylation of prostaglandin synthase by aspirin. Proc Natl Acad Sci USA. 1975; 72: 3073–6.

    Article  PubMed  CAS  Google Scholar 

  22. Patrono C, Ciabattoni G, Pinca E et al. Low dose aspirin and inhibition of thromboxane B2 production in healthy subjects. Thromb Res. 1980; 17: 317–27.

    Article  PubMed  CAS  Google Scholar 

  23. Patrignani P, Filabozzi P, Patrono C. Selective cumulative inhibition of platelet thromboxane production by low-dose aspirin in healthy subjects. J Clin Invest. 1982; 69: 1366–72.

    Article  PubMed  CAS  Google Scholar 

  24. Futaki N, Takahashi S, Yokoyama M, Arai I, Higuchi S, Otomo S. NS-398, a new anti-inflammatory agent, selectively inhibits prostaglandin G/H synthase/cyclooxygenase (COX-2) activity in vitro. Prostaglandins. 1994; 47: 55–9.

    Article  PubMed  CAS  Google Scholar 

  25. Masferrer JL, Zweifel BS, Manning PT et al. Selective inhibition of inducible cyclooxygenase 2 in vivo is antiinflammatory and nonulcerogenic. Proc Natl Acad Sci USA. 1994; 91: 3228–32.

    Article  PubMed  CAS  Google Scholar 

  26. Chan C-C, Gordon R, Brideau C et al. In vivo pharmacology of L-745,337: A novel non steroidal antiinflammatory agent (NSAID) with an ulcerogenic sparing effect in rat and monkey stomach. Can J Physiol Pharm. 1994; 72 (Suppl. 1): 266.

    Article  Google Scholar 

  27. Chan C-C, Boyce S, Brideau C et al. Pharmacology of a selective cyclooxygenase-2 inhibitor L745,337: a novel non-steroidal antiinflammatory agent with an ulcerogenic sparing effect in rat and non-human primate stomach. J Pharmacol Exp Ther. 1995; 274: 1531–7.

    PubMed  CAS  Google Scholar 

  28. Panara MR, Greco A, Santini G et al. Effects of the novel antiinflammatory compounds, NS-398 and L-745,337 on the cyclooxygenase activity of human blood prostaglandin endoperoxide synthase. Br J Pharmacol. 1995; 116: 2429–34.

    PubMed  CAS  Google Scholar 

  29. Copeland RA, Williams JM, Giannaras J et al. Mechanism of selective inhibition of the inducible isoform of prostaglandin G/H synthase. Proc Natl Acad Sci USA. 1994; 91: 11202–6.

    Article  PubMed  CAS  Google Scholar 

  30. Morrow JD, Hill KE, Burk RF, Nanmour TM, Badr KF, Roberts LJ II. A series of prostaglandin Fr like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc Natl Acad Sci USA. 1990; 87: 9383–7.

    Article  PubMed  CAS  Google Scholar 

  31. Takahashi KT, Nammour TM, Fukunaga M et al. Glomerular actions of a free radical-generated novel prostaglandin, 8-epi-PGF2a in the rat. Evidence for interactions with thromboxane A, receptors. J Clin Invest. 1992; 90: 136–41.

    Article  PubMed  CAS  Google Scholar 

  32. Morrow JD, Minton TA, Roberts LJ II. The F2-isoprostane, 8-epi-prostaglandin Fla, a potent agonist of the vascular thromboxane/endoperoxide receptor, is a platelet thromboxane/endoperoxide receptor antagonist. Prostaglandins. 1992; 44: 155–63.

    Article  PubMed  CAS  Google Scholar 

  33. Praticò D, Lawson JA, FitzGerald GA. Cyclooxygenase dependent formation of the isoprostane, 8-epi-PGF2a J Biol Chem. 1995; 270: 9800–8.

    Article  PubMed  Google Scholar 

  34. Wang Z, Ciabattoni G, Créminon C, Lawson J, FitzGerald GA, Patrono C, Maclouf J. Immunological characterization of urinary 8-epi-PGF20 excretion in man. J Pharmacol Exp Ther. 1995; 275: 94–100.

    PubMed  CAS  Google Scholar 

  35. Patrignani P, Panara MR, Cipollone F, Greco A, Ciabattoni G, Patrono C. Induction of prostaglandin endoperoxide synthase 2 in monocytes of human whole blood is associated with cyclooxygenase-dependent isoprostane formation. J Invest Med. 1995; 43: 335A.

    Google Scholar 

  36. Cipollone C, Ganci A, Panara MR et al. Effects of nabumetone on prostanoid biosynthesis in man. Clin Pharmacol Ther. 1995; 58: 335–41.

    Article  PubMed  CAS  Google Scholar 

  37. Goudie AC, Gaster LM, Lake AW et al. 4-(6-methoxy-2-naphthyl)butan-2-one and related analogues, a novel structural class of antiinflammatory compounds. J Med Chem. 1978; 21: 1260–4

    Article  PubMed  CAS  Google Scholar 

  38. Blower PR. The unique pharmacological profile of nabumetone. J Rheumatol. 1992; 19 (suppl. 36): 13–9.

    Google Scholar 

  39. Hyneck ML. An overview of the clinical pharmacokinetics of nabumetone. J Rheumatol. 1992; 19 (suppl. 36): 20–4.

    Google Scholar 

  40. Boyle EA, Freeman PC, Mangan FR, Thomson MJ. Nabumetone (BRL 14777, 4-[6-methoxy-2naphthyl]-butan-2-one); a new anti-inflammatory agent. J Pharm Pharmacol. 1982; 34: 562–9.

    Article  PubMed  CAS  Google Scholar 

  41. Lister BJ, Poland M, Delapp RE. Efficacy of nabumetone versus diclofenac, naproxen, ibuprofen, and piroxicam in osteoarthritis and rheumatoid arthritis. Am J Med. 1993; 95 (suppl. 2A): 3S - 9S.

    Article  Google Scholar 

  42. Emery P, Clark A, Williams P et al. Nabumetone compared with naproxen in the treatment of rheumatoid arthritis: a multicenter, double blind, randomized, parallel group trial in hospital outpatients. J Rheumatol. 1992; 19 (suppl. 36): 41–7.

    Google Scholar 

  43. DeWitt DL, Meade EA, Smith WL. PGH synthase isozyme selectivity: the potential for safer nonsteroidal antiinflammatory drugs. Am J Med. 1993; 95 (suppl. 2A): 40S - 4S.

    Article  PubMed  CAS  Google Scholar 

  44. Von Schrader HW, Busher G, Dierdorf D, Mugge H, Wolf D. Nabumetone, a novel anti-inflammatory drug: bioavailability after different dosage regimens. Int J Clin Pharmacol Ther Toxicol. 1984; 22: 672–6.

    Google Scholar 

  45. Catella F, FitzGerald GA. Paired analysis of urinary thromboxane B2 metabolites in humans. Thromb Res. 1987; 47: 647–56.

    Article  PubMed  CAS  Google Scholar 

  46. Davì G, Catalano I, Averna M et al. Thromboxane biosynthesis and platelet function in type-II diabetes mellitus. N Engl J Med. 1990; 322: 1769–76.

    Article  PubMed  Google Scholar 

  47. Davì G, Notarbartolo A, Catalano I et al. Increased thromboxane biosynthesis in type IIa hypercholesterolemia. Circulation. 1992; 85: 1792–7.

    PubMed  Google Scholar 

  48. Koudstaal PJ, Ciabattoni G, Van Gijn J et al. Increased thromboxane biosynthesis in patients with acute cerebral ischemia. Stroke. 1993; 24: 219–22.

    Article  PubMed  CAS  Google Scholar 

  49. Vejar M, Fragasso G, Lipkin DP et al. Dissociation of platelet activation and spontaneous myocardial ischemia in unstable angina. Thromb Haemostasis. 1990; 63: 163–8.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers and William Harvey Press

About this chapter

Cite this chapter

Patrono, C. et al. (1996). COX-2 expression and inhibition in human monocytes. In: Vane, J., Botting, J., Botting, R. (eds) Improved Non-Steroid Anti-Inflammatory Drugs: COX-2 Enzyme Inhibitors. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9029-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-9029-2_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-9031-5

  • Online ISBN: 978-94-010-9029-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics