Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 10))

  • 1543 Accesses

Abstract

A vibrating cantilever technique is presented, which allows the continuous measurement of the tip-sample interaction force F int(z) in the contact as well as in the non-contact region as a function of the tip-sample distance z. The method relies on the measurement of the frequency difference Δf = f — f0 between the eigenfrequency f 0 of the free cantilever and the actual resonance frequency f of the cantilever, which is influenced by the tip-sample interaction potential.

From such frequency shift data, F int(z) can be reconstructed, as we will demonstrate with the example of a silicon tip vibrating near a graphite surface. The resulting F int(z)-curves are subsequently used to extract parameters like the adhesion force F ad or the point of contact Z c . A detailed comparison with suitable model interactions additionally opens an elegant way to investigate the mechanics of the nanocontact, which behaves in good approximation as expected from the so-called Hertz-plus-offset model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Albrecht, T. R., Grütter, P., Home, D., and Rugar, D. (1991), “Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity”, J. Appl. Phys. 69, 668–673.

    Article  Google Scholar 

  • Allers, W., Schwarz, A., Schwarz, U. D., and Wiesendanger, R. (1998), “A scanning force microscope with atomic resolution in ultrahigh vacuum and at low temperatures”, Rev. Sci. Instrum. 69, 221–225.

    Article  CAS  Google Scholar 

  • Bennewitz R. Gerber Ch. and Meyer E. Eds. (2000) “Proceedings of the Second International Workshop on Noncontact Atoic Force Microscopy” Appl. Surf. Sci. 157.

    Google Scholar 

  • Bhushan, B., and Kulkarni, A. V. (1996), “Effect of normal load on microscale friction measurements”, Thin Solid Films 278, 49–56.

    Article  CAS  Google Scholar 

  • Bhushan, B., Ed. (1997), Micro/Nanotribology and Its Applications, NATO ASI Series E: Applied Sciences, Vol. 330, Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Bhushan, B., Ed. (1999), Handbook of Micro /Nanotribology, Second Edition, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Burgess, A. K., Hughes, B. D., and White, L. R. (1987), “Adhesive Contact of Elastic Solids”, unpublished.

    Google Scholar 

  • Burnham, N. A., and Colton, R. J. (1989), “Measuring the nanomechanical properties and surface forces of materials using an atomic force microscope”, J. Vac. Sci. Technol. A 7, 2906–2913.

    Article  CAS  Google Scholar 

  • Burnham, N. A., Colton, R. J., and Pollock, H. M. (1991), “Interpretation issues in force microscopy”, J. Vac. Sci. Technol. A 9, 2548–2556.

    Article  CAS  Google Scholar 

  • Carpick, R. W., Agrait, N., Ogletree, D. F., and Salmerón, M. (1996), “Measurement of interfacial shear (friction) with an ultrahigh vacuum atomic force microscope”, J. Vac. Sci. Technol. B 14, 1289–1295.

    Article  CAS  Google Scholar 

  • Derjaguin, B. V., Müller, V. M., Toporov, Y. P. (1975), “Effect of Contact Deformations on the Adhesion of Particles”, J. Colloid Interface Sci. 53, 314–326.

    Article  CAS  Google Scholar 

  • Dürig, U., Züger, O., and Stalder, A. (1992), “Interaction force detection in scanning probe microscopy: Methods and applications”, J. Appl. Phys. 72, 1778–1798.

    Article  Google Scholar 

  • Dürig, U. (1999a), “Relations between interaction force and frequency shift in large-amplitude dynamic force microscopy”, Appl. Phys. Lett. 75, 433–435.

    Article  Google Scholar 

  • Dürig, U. (1999b) “Conservative and Dissipative Interactions in Dynamic Force Spectroscopy”, Surf. Interface Anal. 27, 467–473.

    Article  Google Scholar 

  • Dürig, U. (2000), “Extracting interaction forces and complementary observables in dynamic probe microscopy”, Appl. Phys. Lett. 76, 1203–1205.

    Article  Google Scholar 

  • Enachescu, M., van den Oetelaar, R. J. A., Carpick, R. W., Ogletree, D. F., Flipse, C. F. J., and Salmeron, M. (1998), “Atomic Force Microscopy Study of an Ideally Hard Contact: The Diamond(111)/Tungsten Carbide Interface”, Phys. Rev. Lett. 81, 1877–1880.

    Article  CAS  Google Scholar 

  • Giessibl, F. J. (1997), “Forces and frequency shifts in atomic-resolution dynamic-force microscopy”, Phys. Rev. B 56, 16010–16015.

    Article  CAS  Google Scholar 

  • Gotsmann, B., Anczykowski, B., Seidel, C, and Fuchs, H. (1999a), “Determination of tip-sample interaction forces from measured dynamic force spectroscopy curves”, Appl. Surf. Sci. 140, 314–319 (1999).

    Article  CAS  Google Scholar 

  • Gotsmann, B., Seidel, C, Anczykowski, B., and Fuchs, H. (1999b), “Conservative and dissipative tip-sample interaction forces probed with dynamic AFM”, Phys. Rev. B 60, 11051–11061.

    Article  CAS  Google Scholar 

  • Guggisberg, M., Bammerlin, M., Loppacher, Ch., Pfeiffer, O., Abdurixit, A., Barwich, V., Bennewitz, R., Baratoff, A., Meyer, E., and Giintherodt, H.-J. (2000), “Separation of interactions by noncontact force microscopy”, Phys. Rev. B 61, 11151–11155.

    Article  CAS  Google Scholar 

  • Hertz, H. (1881), “Ueber die Berührung fester elastischer Körper”, J. Reine Angew. Math. 92, 156–171.

    Google Scholar 

  • Hölscher, H., Allers, W., Schwarz, U. D., Schwarz, A., and Wiesendanger, R. (1999), “Determination of Tip-Sample Interaction Potentials by Dynamic Force Spectroscopy”, Phys. Rev. Lett. 83, 4780–4783 (1999).

    Article  Google Scholar 

  • Hölscher, H., Gotsmann, B., Schwarz, A., Allers, W., Schwarz, U. D., Fuchs, H., and Wiesendanger, R. (2000a), manuscript in preparation.

    Google Scholar 

  • Hölscher, H., Schwarz, A., Allers, W., Schwarz, U. D., and Wiesendanger, R. (2000b) “Quantitative Analysis of dynamic-force-spectroscopy data on graphite(OOOl) in the contact and noncontact regimes”, Phys. Rev. B 61, 12678–12681.

    Article  Google Scholar 

  • Hu, J., Xiao, X.-D., Ogletree, D. F., and Salmeron, M. (1995), “Atomic scale friction and wear of mica”, Surface Science 327, 358–370.

    Article  CAS  Google Scholar 

  • Jarvis, S. P., Yamada, H., Ymamoto, S.-I., and Tokumoto, H. (1996a) “A new force controlled atomic force microscope for use in ultrahigh vacuum”, Rev. Sci Instrum. 67, 2281–2285.

    Article  Google Scholar 

  • Jarvis S. P. Yamada H. Yamamoto S.-L Tokumoto H. and Pethica J. B. 1996b “Direct measurement of interatomic potentials” Nature 384 247–249

    Article  CAS  Google Scholar 

  • Jarvis, S. P., and Tokumoto, H. (1997), “Measurement and Interpretation of Forces in the Atomic Force Microscope”, Probe Microscopy 1, 65–79.

    CAS  Google Scholar 

  • Johnson, K. L. (1985), Contact Mechanics, Cambridge University Press, Cambridge, United Kingdom.

    Book  Google Scholar 

  • Johnson, K. L. (1997), “Adhesion and friction between a smooth elastic spherical asperity and a plane surface”, Proc. R. Soc. Lond. A 453, 163–179.

    Article  CAS  Google Scholar 

  • Landau, L., and Lifschitz, E. M. (1962), Lehrbuch der Theoretischen Physik, Band 1: Mechanik, Akademie-Verlag, Berlin.

    Google Scholar 

  • Landau, L., and Lifschitz, E. M. (1975), Lehrbuch der Theoretischen Physik, Band 7: Elastizitätstheorie, Akademie-Verlag, Berlin, pp. 34–39.

    Google Scholar 

  • Lantz, M. A., O’Shea, S. J., Weiland, M. E., and Johnson, K. L. (1997), “Atomic-force microscope study of contact area and friction on NbSe2”, Phys. Rev. B 55, 10776–107

    Article  CAS  Google Scholar 

  • Maugis, D. (1992), “Adhesion of Spheres: The JKR-DMT Transition Using a Dugdale Model”, J. Coll. Interface Sci. 150, 243–269.

    Article  CAS  Google Scholar 

  • Mazeran, P.-E., and Loubet, J.-L. (1997), “Force modulation with a scanning force microscope: an analysis”, Tribol. Lett. 3, 125–132.

    Article  CAS  Google Scholar 

  • Mate, C. M., McClelland, G. M., Erlandsson, R., and Chiang, S. (1987), “Atomic-Scale Friction of a Tungsten Tip on a Graphite Surface”, Phys. Rev. Lett. 59, 1942–1945.

    Article  CAS  Google Scholar 

  • Marti, O., Colchero, J., and Mlynek, J. (1990), “Combined scanning force and friction microscopy of mica”, Nanotechnology 1, 141–144.

    Article  Google Scholar 

  • Meyer, G. and Amer, N. M. (1990), “Simultaneous measurement of lateral and normal forces with an optical-beam-deflection atomic force microscope”, Appl. Phys. Lett. 57, 2089–2091.

    Article  CAS  Google Scholar 

  • Meyer, E., Lüthi, R., Howald, L., Bammerlin, M., Guggisberg, M., Güntherodt, H.-J., Scandella, L., Gobrecht, J., Schumacher, A., and Prins, R. (1996), “Friction Force Spectroscopy”, in Physics of Sliding Friction (B. N. J. Persson and E. Tosatti, eds.), pp. 349–367, NATO ASI Series E: Applied Sciences, Vol. 311, Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Morita, S., and Tsukada, M., Eds. (1999), “Proceedings of the First International Workshop on Noncontact Atomic Force Microscopy”, Appl. Surf. Sci. 140.

    Google Scholar 

  • Muller, V. M., Yushchenko, V. S., and Derjaguin, B. V. (1980), “On the Influence of Molecular Forces on the Deformation of an Elastic Sphere and Its Sticking to a Rigide Plane”, J. Coll. Interface Sci. 77, 91–101.

    Article  CAS  Google Scholar 

  • Muller, V. M., Yushchenko, V. S., and Derjaguin, B. V. (1980), “General Theoretical Consideration of the Influence of Surface Forces on Contact Deformations and the Reciprocal Adhesion of Elastic Spherical Particles”, J. Coll. Interface Sci. 92, 92–101.

    Article  Google Scholar 

  • Schwarz, U. D., Zwörner, O., Köster, P., and Wiesendanger, R. (1997a), “Quantitative analysis of the frictional properties of solid materials at low loads. I. Carbon compounds.”, Phys. Rev. B 56, 6987–6996.

    Article  CAS  Google Scholar 

  • Schwarz, U. D., Zwörner, O., Köster, P., and Wiesendanger, R. (1997b), “Quantitative analysis of the frictional properties of solid materials at low loads. II. Mica and germanium sulfide.”, Phys. Rev. B 56, 6997–7000.

    Article  CAS  Google Scholar 

  • Schwarz, U. D., Zwörner, O., Köster, P., and Wiesendanger, R. (1997c), “Preparation of probe tips with well-defined spherical apexes for quantitative scanning force spectroscopy”, J. Vac. Sci. Technol. B 15, 1527–1530.

    Article  CAS  Google Scholar 

  • Sokolov, I. Yu., Henderson, G. S., and Wicks, F. J. (1997), “The contrast mechanism for true atomic resolution by AFM in non-contact mode: quasinon-contact mode?”, Surf. Sci. Lett. 381, L558–L562.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schwarz, U.D., Hölscher, H., Allers, W., Schwarz, A., Wiesendanger, R. (2001). Investigation of the Mechanics of Nanocontacts Using a Vibrating Cantilever Technique. In: Bhushan, B. (eds) Fundamentals of Tribology and Bridging the Gap Between the Macro- and Micro/Nanoscales. NATO Science Series, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0736-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0736-8_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6837-3

  • Online ISBN: 978-94-010-0736-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics