Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 52))

Abstract

The nuclear fission is a main device of energy production to sustain the development over the 21st century in the world. The recycling of fissile materials must be a key issue for keeping the use of nuclear energy. Pyrochemistry/pyrometallugy is one of potential devices for future nuclear fuel cycle. Not only economic advantage but also environmental safety and strong resistance for proliferation are required for the fuel cycle. In order to satisfy the requirement, actinides recycling used pyrochemistry with molten salt of LiCl-KCl, which could be implemented to light water reactor and fast breeder reactor fuel cycles, has been an issue of current interest. Electrorefining for U and Pu separation and reductive-extraction for TRU separation have been studied over decade. Reduction process of oxides in molten LiCl has been also examined by use of actinide oxides. The application of this technology on reprocessing of oxide and metal spent fuels and on separation of actinides in high level liquid wastes should improve the present nuclear fuel cycle system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. Hondo, Y. Uchiyama and Y. Moriizumu, “Evaluation of power generation technologies based on life cycle CO2 emissions”, CRIEPI report Y99009, March 2000. (In Japanese)

    Google Scholar 

  2. T. Inoue and H. Tanaka, “Recycling of actinides produced in LWR and FBR fuel cycles by applying pyrometallurgical process”, Proc. on Future Nuclear Systems (GLOBAL’97), pp. 646–652, Oct. 5-10, 1997, Yokohama, Japan, (1997)

    Google Scholar 

  3. A Report to Congress, “A roadmap for developning accelerator transmutation of waste (ATW) technology”, October 1999.

    Google Scholar 

  4. M. Hugon, “Overview of the EU research projects on partitioning and transmutation of long-lived radionuclides”, EUR 19614 EN.

    Google Scholar 

  5. Committee on electrometallurgical techniques for DOE spent fuel treatment, “Electrometallurgical techniques for DOE spent fuel treatment, Final report”, National Academy Press, 2000.

    Google Scholar 

  6. NEA/OECD, Proceedings of the workshop on Pyrochemical separation, Avignon, France, 14-16 March 2000.

    Google Scholar 

  7. Japan Atomic Energy Commission, “State of art and future program of partitioning and transmutation in Japan”, November, 2000

    Google Scholar 

  8. Y. I. Chang, “The integral fast reactor”, Nucl. Technol, 88, 129, (1989)

    CAS  Google Scholar 

  9. Y. Sakamura, T. Hijikata, K. Kinoshita, T. Inoue, T. S. Storvick, C. L. Krueger, J. J. Roy, D. L. Grimmett, S. P. Fusselman, and R. L. Gay, “Measurement of standard potentials of actinides (U, Np, Pu, Am) in LiCl-KCl eutectic salt and separation of actinides from lanthanides by electrorefining”, J. Alloy. Compound, 271-273, 592, (1998)

    Article  CAS  Google Scholar 

  10. M. Kurata, Y. Sakamura, and T. Matsui, “Thermodynamic quantities of actinides and rare earth elements in liquid bismuth and cadmium”, J. Alloy. Compound, 234, 83, (1996)

    Article  Google Scholar 

  11. T. C. Totemeier and R. D. Mariani, “Morphologies of uranium and uranium-zirconium electrodeposits”, J. Nucl. Mater. 250, 131, (1997)

    Google Scholar 

  12. T. Koyama, M. Iizuka, Y. Shoji, R. Fujita, H. Tanaka, T. Kobayashi and M. Tokiwai, “An experimental study of molten salt electrorefining of uranium using solid iron cathode and liquid cadmium cathode for development of pyrometallurgical reprocessing”, J. Nucl. Sci. Technol., 34, 384,(1997)

    Article  Google Scholar 

  13. T. Koyama, M. Iizuka, N. Kondo, R. Fujita and H. Tanaka, “Electrodeposition of uranium in stirred liquid cadmium cathode”, J. Nucl. Mater., 247, 227, (1997)

    Article  Google Scholar 

  14. M. Iizuka, K. Uozumi, T. Inoue, T. Iwai, O. shirai and Y. Arai, “Behavior of plutonium and americium at liquid cadmium cathode in molten LiCl-KCl electrolyte”, To be submitted in J. Nucl. Mater.

    Google Scholar 

  15. E. J. Karell, K. V. Gourishankar, L. S. Chow and R. E. Everhart, “Electrometallurgical treatment of oxide spent fuels”, Int. Conf. On Future Nuclear Systems (GLOBAL’99), Aug. 29 — Sep.3, 1999, Jackson Hole, Wyoming, (1999)

    Google Scholar 

  16. T. Usami, M. Kurata, T. Inoue, J. Jenkins, H. Sims, S,B eetham and D. Browm, “Pyrometallurgical reduction of unirradiated TRU oxides by lithium in a lithium chloride medium”, OECD Nuclear Energy Agency, Nuclear Science Committee, Workshop on Pyrochemical Separations, 14-15 March, 2000, Avignon, France, (2000)

    Google Scholar 

  17. M. Kurata, T. kato, K. Kinoshita and T. Inoue, “Conversion of high level waste to chloride for pyrometallurgical partitioning of minor actinides”, Proc. Of 7th Int. Conf. On Radioactive Waste Management and Environmental Remediation, ICEM’99, Sep. 26–30, 1999, Nagoya, (1999)

    Google Scholar 

  18. K. Kinoshita, T. Inoue, S. P. Fusselman, D. L. Grimmett, J. J. Roy, R. L. Gay C. L. Krueger, C. R. Nabelek and T. S. Storvick, “Separation of uranium and transuranic elements from rare earth elements by means of multistage extraction in UCl-KCl/Bi system”, J. Nucl. Sci. Technol., 36, 189, (1999)

    Article  CAS  Google Scholar 

  19. T. Koyama, C. Seto, T. Yoshida, F. Kawamura and H. Tanaka, Evaluation of Emerging Nuclear Fuel Cycle Systems (GLOBAL’95), VOL.2, 1744, Sep.11-14, 1995, Versailles, (1995)

    Google Scholar 

  20. Y. Sakamura, T. Inoue, T. Shimizu and K. kobayashi, “Development of pyrometallurgical partitioning technology for TRU in high level radioactive wastes-vitrification process for salt wastes-“,, Int. Conf. On Future Nuclear Fuel Systems (GLOBAL’97), VOL. 2, 1222, Oct. 5-10, 1997, Yokohama, (1997)

    Google Scholar 

  21. K. Kinoshita, M. Kurata and T. Inoue, “Estimation of materials balance in pyrometallurgical partitioning process of transuranic elements from high-level liquid waste”, J. Nucl. Sei. Technol., 37, 75, (2000)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Inoue, T., Sakamura, Y. (2002). Pyrochemistry in Nuclear Industry. In: Gaune-Escard, M. (eds) Molten Salts: From Fundamentals to Applications. NATO Science Series, vol 52. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0458-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0458-9_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0459-9

  • Online ISBN: 978-94-010-0458-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics