Skip to main content

Neutron Scattering: Technique and Applications to Molten Salts

  • Chapter
Molten Salts: From Fundamentals to Applications

Part of the book series: NATO Science Series ((NAII,volume 52))

Abstract

Neutron scattering is a powerful, versatile and well-established technique capable of revealing the structural and dynamic properties of materials of ever increasing complexity at the atomic level. This article, resulting from a series of lectures given by the author at the NATO-ASI (advanced studies institute) on molten salts, consists of two parts. The first part gives an overview of the techniques of neutron scattering, its underlying theory, and methods of data collection and analyses. The major contribution of these techniques is the ability to determine, by using neutron diffraction isotopic substitution (NDIS) experiments, the individual partial structure factors (PSFs), S αβ (Q), and pair distribution functions (PDFs), g αβ (r), which is crucial in obtaining structural details of high spatial resolution. Since these distribution functions are the first in a hierarchy of inter-atomic correlations, they are the only ones directly accessible from experiments, computer simulations, and theory. The information obtained from such experiments can thus provide a critical test of the model potentials and liquid state theories. The NDIS methods can also assist in the analysis of spectroscopic (e. g., Raman) data, which are targeted at the identification of chemical species in a liquid. However, if these species are short-lived and not dominant, they will not be detected by the NDIS because the g αβ (r) are average functions over all possible configurations and do not contain any information on individual species other than those that are long-lived and exhibit high degree of correlation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sears, V. (1989) Neutron Optics, An Introduction to the Theory of Neutron Optical Phenomena and their Applications, Oxford University Press.

    Google Scholar 

  2. Soper, A. K., Howells, W. S. and Hannon, A. C. (1989) ATLAS-Analysis of Time-of-Flight Diffraction Data from Amorphous and Liquid Samples, R. A. L. Report No. 89-046.

    Google Scholar 

  3. Squires, G. L. (1978) Introduction to the Theory of Thermal Neutron Scattering, Cambridge University Press.

    Google Scholar 

  4. Lovesey, S. W. (1986) Theory of Neutron Scattering from Condensed Matter Vol. 1, International Series of Monographs on Physics 72, Oxford Science Publications.

    Google Scholar 

  5. Sears, V. F. (1992) Neutron Scattering Lengths and Cross-sections, Neutron News 3, 26.

    Article  Google Scholar 

  6. Placzeck, G. (1952) Phys. Rev. 86, 377.

    Article  Google Scholar 

  7. Paalman, H. H. and Pings, C. J. (1962) J. Appl. Phys. 33, 2635.

    Article  Google Scholar 

  8. Poncet, P. F. J. (1976) Doctoral Thesis, University of Reading; (1978) ILL Report 78P0875, ILL.

    Google Scholar 

  9. Blech, I. A. and Averbach, B. L. (1965) Phys. Rev. A 137, 1113.

    CAS  Google Scholar 

  10. Soper, A. K., Andreani, C. and Nardone, M. (1993) Phys. Rev. E 47, 2598.

    Article  CAS  Google Scholar 

  11. Soper, A. K. (1986) Chem. Phys. 107, 61.

    Article  CAS  Google Scholar 

  12. Soper, A. K. (1990) Neutron Scattering Data Analyses, Instr. Phys. Conf. Ser. 107, Ed. Johnson, M. W., Bristol IOP, p. 57.

    Google Scholar 

  13. Allen, M. P. and Tildesley, D. J. (1987) Computer Simulation of Liquids, Clarendon Press, Oxford.

    Google Scholar 

  14. Kalugin, O. N. and Adya, A. K. (2000) Phys. Chem. Chem. Phys. 2, 11–22.

    Article  CAS  Google Scholar 

  15. Adya, A. K. and Kalugin, O. N. (2000) J. Chem. Phys. 113, 4740–4750.

    Article  CAS  Google Scholar 

  16. Enderby, J. E., North, D. M. and Egelstaff, P. A. (1966) Philos. Mag. 14, 961.

    Article  CAS  Google Scholar 

  17. Neilson, G. W., and Adya, A. K. (1997) Neutron Diffraction Studies on Liquids, Annual Reports C: Royal Soc. Chem. 93, 101–145.

    CAS  Google Scholar 

  18. Adya, A. K., Takagi, R. (1998) Unravelling the Internal Complexities of Molten Salts, Z. Naturforsch 53a, 1037–1048.

    Google Scholar 

  19. Page, D. I., Mika, K. (1971) J. Phys. C. 4, 3034.

    Article  CAS  Google Scholar 

  20. Edwards, F. G., Enderby, J. E., Howe, R. A. and Page, D. I. (1975) J. Phys. C. 8, 3483.

    Article  CAS  Google Scholar 

  21. Adya, A. K., Takagi, R., Sato, Y., Gaune-Escard, M., Barnes, A. C. and Fischer, H. E., to be submitted.

    Google Scholar 

  22. Takagi, R., Hutchinson, F., Madden, P. A., Adya, A. K. and Gaune-Escard, M. (1999) J. Phys.: Condens. Matter 11, 645–658.

    Article  CAS  Google Scholar 

  23. Allen, D. A., Howe, R. A., Wood, N. D. and Howells, W. S. (1992) J. Phys.: Condens. Matter 4, 1407.

    Article  CAS  Google Scholar 

  24. Adya, A. K. and Neilson, G. W. (1990) Molec. Phys. 69, 747.

    Article  CAS  Google Scholar 

  25. Adya, A. K., Neilson, G. W., Okada, I. and Okazaki, S. (1993) Molec. Phys. 79, 1327.

    Article  CAS  Google Scholar 

  26. Adya, A. K. and Neilson, G. W. (1990) Molec. Phys. 71, 1091.

    Article  CAS  Google Scholar 

  27. Biggin S. and Enderby, J. E. (1982) J. Phys. C: Solid State Phys. 15, L305.

    Article  CAS  Google Scholar 

  28. Allen, D. A., Howe, R. A., Wood, N. D. and Howells, W. S. (1991) J. Chem. Phys. 94, 5071.

    Article  CAS  Google Scholar 

  29. Badyal, Y. S. and Howe, R. A. (1993) J. Phys.: Condens. Matter 5, 7189.

    Article  CAS  Google Scholar 

  30. McGreevy, R. L. and Howe, M. A. (1989) J. Phys.: Condens. Matter 1, 9957.

    Article  CAS  Google Scholar 

  31. Howe, M. A. and McGreevy, R. L. (1988) Phil. Mag. B 58, 485.

    Article  CAS  Google Scholar 

  32. Derrien, J. Y. and J. Dupuy, (1975) J. Phys. Paris 36, 191.

    CAS  Google Scholar 

  33. Mitchell, E. W. J., Poncet, P. F. J, and Stewart, R. J. (1976) Phil. Mag. B 34, 721.

    Article  CAS  Google Scholar 

  34. Locke, J., Messoloras, S., Stewart, R. J., McGreevy, R. L. and Mitchell, E. W. J. (1985) Phil. Mag. B 51, 301.

    Article  CAS  Google Scholar 

  35. Eisenberg, S., Jal, J.-F., Dupuy, J., Chieux, P. and Knoll, W. (1982) Phil. Mag. A 46, 195.

    Article  CAS  Google Scholar 

  36. Allen, D. A. and Howe, R. A. (1992) J. Phys.: Condens. Matter 4, 6029.

    Article  CAS  Google Scholar 

  37. Derrien, J. Y. and J. Dupuy, (1976) Phys. Chem. Liq. 5, 71.

    Article  CAS  Google Scholar 

  38. Biggin, S., Gay, M. and Enderby, J. E. (1984) J. Phys. C: Solid State Phys. 17, 977.

    Article  CAS  Google Scholar 

  39. Biggin, S. and Enderby J. E. (1981) J. Phys. C: Solid State Phys. 14, 3577.

    Article  CAS  Google Scholar 

  40. McGreevy, R. L. and Mitchell, E. W. J. (1982) J. Phys. C 15, 5537.

    Article  CAS  Google Scholar 

  41. Edwards, F. G., Howe, R. A., Enderby J. E. and Page, D. I. (1978) J. Phys. C: Solid State Phys. 11, 1053.

    Article  CAS  Google Scholar 

  42. Biggin, S. and Enderby J. E. (1981) J. Phys. C: Solid State Phys. 14, 3129.

    Article  CAS  Google Scholar 

  43. Newport, R. J., Howe, R. A. and Wood, N. D. (1985) J. Phys. C: Solid State Phys. 18, 5249.

    Article  CAS  Google Scholar 

  44. Allen, D. A., Howe, R. A., Wood, N. D. and Howells, W. S. (1991) J. Chem. Phys. 94, 5071.

    Article  CAS  Google Scholar 

  45. Badyal, Y. S. and Howe, R. A. (1993) J. Phys.: Condens. Matter 5, 7189.

    Article  CAS  Google Scholar 

  46. de Leeuw, S. (1978) Molec. Phys. 36, 103 and 765.

    Article  Google Scholar 

  47. Pastore, G., Ballone, P. and Tosi, M. P. (1986) J. Phys. C: Solid State Phys. 19, 487.

    Article  CAS  Google Scholar 

  48. Woodcock, L. V. C., Angell, A. and Cheeseman, P. (1976) J. Chem. Phys. 65, 1565.

    Article  CAS  Google Scholar 

  49. Gardner, P. J. and Heyes, D. M. (1985) Physica B 113, 227.

    Google Scholar 

  50. Wood, N. D. and Howe, R. A. (1988) J. Phys. C: Solid State Phys. 21, 3177.

    Article  CAS  Google Scholar 

  51. Wood, N. D., Howe, R. A., Newport, R. J. and Faber Jr., J. (1988) J. Phys. C: Solid State Phys. 21, 669.

    Article  CAS  Google Scholar 

  52. Wilson, M. and Madden, P. A. (1993) J. Phys.: Condens. Matter 5, 6833; (1994) 6, 159.

    Article  CAS  Google Scholar 

  53. Adya, A. K., Takagi, R., Sakurai, M. and Gaune-Escard, M., (1998) Proc. 11th Int. Symp. Molten Salts, Ed. P. C. Trulove, H. De Long and S. Deki, Electrochem. Soc. Inc., Pennington, 98-11, 499–512.

    Google Scholar 

  54. Triolo, R. and Narten, A. H. (1978) J. Chem. Phys. 69, 3159.

    Article  CAS  Google Scholar 

  55. Johnson, E., Narten, A. H., Thiessen W. E. and Triolo, R (1978) Farad. Discuss. Chem. Soc. 66, 287.

    Article  Google Scholar 

  56. Badyal, Y. S., Allen, D. A. and Howe, RA. (1994) J. Phys.: Condens. Matter, 6, 10193.

    Article  CAS  Google Scholar 

  57. Price, D. L., Saboungi, M. L., Hashimoto, S. and Moss, S. C. (1992) Proc. 8th Int. Symp. Molten Salts, Ed. R. J. Gale, G. Blomgren and H. Kojima, Electrochem. Soc. Inc., Pennington, 92-16, 14.

    Google Scholar 

  58. Price, D. L., Saboungi, M. L., Badyal, Y. S., Wang, J., Moss, S. C. and Leheny, RL. (1998) Phys. Rev. B 57, 10496.

    Article  CAS  Google Scholar 

  59. Fukushima, Y., Misawa, M. and Suzuki, K. (1975) Res. Rep. Lab. Nucl. Sci. (Tohoku University) 8, 113.

    Google Scholar 

  60. Price, D. L., Saboungi, M. L., Howells, W. S. and Tosi, M. P. (1993) Proc. Int. Symp. Molten Salts, Ed. M. L. Saboungi and H. Kojima, Electrochem. Soc. Inc., Pennington, 93-9, 1.

    Google Scholar 

  61. Saboungi, M. L., Howe, M. A. and Price, D. L. (1990) Proc. 7th Int. Symp. Molten Salts, Ed. C. L. Hussey, S. N. Flengas, J. S. Wilkes and Y. Ito, Electrochem. Soc. Inc., Pennington, 90-17, 8.

    Google Scholar 

  62. Tosi, M. P., Pastore, G., Saboungi, M. L. and Price, D. L. (1991) Physica Scripta T39, 367.

    Article  CAS  Google Scholar 

  63. Saboungi, M. L., Price, D. L., Scamehorn, C. and Tosi, M. P. (1991) Europhys. Lett. 15, 283.

    Article  CAS  Google Scholar 

  64. Wasse, J. C. and Salmon, P. S. (1999) J. Phys.: Condens. Matter 11, 1381–1396.

    Article  CAS  Google Scholar 

  65. Wasse, J. C. and Salmon, P. S. (1998) Physica B 241-243, 967–969.

    Article  Google Scholar 

  66. Wasse, J. C. and Salmon, P. S. (1999) J. Phys.: Condens. Matter 11, 9293–9302.

    Article  CAS  Google Scholar 

  67. Wasse, J. C. and Salmon, P. S. (1999) J. Phys.: Condens. Matter 11, 2171–2177.

    Article  CAS  Google Scholar 

  68. Wasse, J. C., Salmon, P. S. and Dalaplane, R. G. (2000) J. Phys.: Condens. Matter 12, 9539–9550.

    Article  CAS  Google Scholar 

  69. Wasse, J. C., Salmon, P. S. and Dalaplane, R. G. (2000) Physica B 276-278, 433–434.

    Article  CAS  Google Scholar 

  70. Adya, A. K., Matsuura, H., Takagi, R., Rycerz, L. and Gaune-Escard, M. (2000) Proc. XII Int. Symp. Molten Salts, Electrochem. Soc. Inc. Pennington, 99-41, 341–355; Adya, A. K., Matsuura, H., Hutchinson, F., Madden, P. A. and Gaune-Escard, M., to be submitted.

    CAS  Google Scholar 

  71. Adya, A. K., Matsuura, H., Hutchinson, F., Gaune-Escard, M., Madden, P. A., Barnes, A. C. and Fischer, H. E. (2000) Progress in Molten Salt Chemistry 1, Ed. R. W. Berg and H. A. Hjuler, Elsevier, p 37–44.

    Google Scholar 

  72. Kameda, Y., Kotani, S, and Ichikawa, K. (1992) Molec. Phys. 75, 1.

    Article  CAS  Google Scholar 

  73. Adya, A. K. and Neilson, G. W. (1996) J. Non-crystalline Solids 205-207, 168–171.

    Article  CAS  Google Scholar 

  74. Yamaguchi, T., Okada, I., Ohtaki, H., Mikami, M. and Kawamura, K. (1986) Molec. Phys. 58, 349.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Adya, A.K. (2002). Neutron Scattering: Technique and Applications to Molten Salts. In: Gaune-Escard, M. (eds) Molten Salts: From Fundamentals to Applications. NATO Science Series, vol 52. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0458-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0458-9_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0459-9

  • Online ISBN: 978-94-010-0458-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics