Skip to main content

Molten Salts: Fundamentals

Interionic Forces and Relevant Statistical Mechanics

  • Chapter
Molten Salts: From Fundamentals to Applications

Part of the book series: NATO Science Series ((NAII,volume 52))

  • 742 Accesses

Abstract

General background on molten metal halides: chemical coordinates, melting parameters, transport coefficients. Overview on liquid structure. Primitive model for structure and thermodynamics. Background on interionic forces: cohesion and lattice vibrations in alkali halide crystals, ionic binding in alkali halide molecules. Structure of alkali halide melts and chemical short-range order. Liquid-solid and liquid-gas coexistence. Cluster formation in trichloride melts and their mixtures with alkali chlorides. Clusters in aluminium-alkali fluoride mixtures and solutions of sodium metal in molten cryolite. Ionic transport, viscosity and dynamics of density fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rovere, M. and Tosi, M. P. (1986) Structure and dynamics of molten salts, Rep. Progr. Phys. 49, 1001–1081.

    Article  CAS  Google Scholar 

  2. Tosi, M. P., Price, D. L., and Saboungi, M.-L. (1993) Ordering in metal halide melts, Annu. Rev. Phys. Chem. 44, 173–211.

    Article  CAS  Google Scholar 

  3. Pettifor, D. G. (1986) The structure of binary compounds: I. Phenomenological structure maps, J. Phys. C 19, 285–313.

    Article  CAS  Google Scholar 

  4. Talion, J. L. (1982) The entropy change on melting of simple substances, Phys. Lett. A 87, 139–143.

    Article  Google Scholar 

  5. Akdeniz, A. and Tosi, M. P. (1992) Correlations between entropy and volume of melting in halide salts, Proc. R. Soc. London A 437, 85–96.

    Article  CAS  Google Scholar 

  6. Wasse, J. C., Salmon, P. S., and Delaplane, R. G. (2000) Structure of molten trivalent metal bromides studied by using neutron diffraction: the systems DyBr3, YBr3, HoBr3 and ErBr3, J. Phys.: Condens. Matter 12, 9539–9550.

    Article  CAS  Google Scholar 

  7. Bhatia, A. B. and Thornton, D. E. (1970) Structural aspects of the electrical resistivity of binary alloys, Phys. Rev. B 2, 3004–3013.

    Article  Google Scholar 

  8. McGreevy, R. L. and Mitchell, E. W. J. (1982) The determination of the partial pair distribution functions for molten strontium chloride, J. Phys. C15, 5537–5550.

    CAS  Google Scholar 

  9. Tatlipinar, H., Akdeniz, Z., Pastore, G., and Tosi, M. P. (1992) Atomic size effects on local coordination and medium-range order in molten trivalent metal halides, J. Phys.: Condens. Matter 4, 8933–8944.

    Article  CAS  Google Scholar 

  10. Biggin, S. and Enderby, J. E. (1981) The structure of molten zinc chloride, J. Phys. C 14, 3129–3136.

    Article  CAS  Google Scholar 

  11. Price, D. L., Moss, S. C., Reijers, R., Saboungi, M.-L., and Susman, S. (1989) Intermediate-range order in glasses and liquids, J. Phys.: Condens. Matter 1, 1005–1008.

    Article  CAS  Google Scholar 

  12. Waisman, A. and Lebowitz, J. L. (1972) Mean spherical model integral equation for charged hard spheres, J. Chem. Phys. 56, 3086–3099.

    Article  CAS  Google Scholar 

  13. Painter, K. R., Ballone, P., Tosi, M. P., Grout, P. J., and March, N. H. (1983) Capacitance of metal-molten salt interfaces, Surf. Sci. 133, 89–100.

    Article  Google Scholar 

  14. Löwdin, P. O. (1956) Quantum theory of cohesive properties of solids, Phil. Mag. Suppl. 5, 1–172.

    Google Scholar 

  15. Gygi, F., Maschke, K., and Andreoni, W. (1984) Electron charge density of alkali halides beyond the rigid-ion approximation, Solid State Commun. 49, 437–439.

    Article  CAS  Google Scholar 

  16. Böbel, G., Cortona, P., Sommers, C., and Fumi, F. G. (1983) Electron density in NaF and KCl crystals in the self-consistent local-density-functional approximation, Acta Crystallogr. A 39, 400–407.

    Google Scholar 

  17. Born, M. and Huang, K. (1954) Dynamical Theory of Crystal Lattices, Oxford University Press, Oxford.

    Google Scholar 

  18. Tosi, M. P. (1964) Cohesion of ionic solids in the Born model, Solid State Phys. 16, 1–120.

    Article  CAS  Google Scholar 

  19. Fumi, F. G. and Tosi, M. P. (1964) Ionic sizes and Born repulsive parameters in the NaCl-type alkali halides: the Huggins-Mayer and Pauling forms, J. Phys. Chem. Solids 25, 31–44.

    Article  CAS  Google Scholar 

  20. Fumi, F. G. and Tosi, M. P. (1957) Lattice calculations on point imperfections in the alkali halides, Disc. Faraday. Soc. 23, 91–98.

    Google Scholar 

  21. Cochran, W. (1971) Lattice dynamics of ionic and covalent crystals, Crit. Rev. Solid State Sci.2, 1–44.

    Article  CAS  Google Scholar 

  22. Tosi, M. P. and Doyama, M. (1967) Ionic-model theory of polar molecules, Phys. Rev.160, 716–718.

    Article  CAS  Google Scholar 

  23. Kahn, L. R., Hay, P. J., and Shavitt, I. (1974) Theoretical study of curve crossing: ab initio calculations on the four lowest 1+ states of LiF, J. Chem. Phys.61, 3530–3546.

    Article  CAS  Google Scholar 

  24. Galli, G., Andreoni, W., and Tosi, M. P. (1986) Stability and ionization-induced structural transitions of sodium chloride microclusters from Hartree-Fock calculations: Na2Cl2 + and Na2Cl2 +, Phys. Rev. A 34, 3580–3586.

    Article  CAS  Google Scholar 

  25. Jordan, K. D. (1979) Structure of alkali halides: theoretical methods, in Alkali Halide Vapors: Structure, Spectra and Reaction Dynamics, Academic, New York, 479–534.

    Google Scholar 

  26. Brumer, P. and Karplus, M. (1973) Perturbation theory and ionic models for alkali halide systems: diatomics, J. Chem. Phys. 58, 3903–3918.

    Article  CAS  Google Scholar 

  27. Sangster, M. J. L. and Dixon, M. (1976) Interionic potentials in alkali halides and their use in simulations of the molten salts, Adv. Phys. 25, 247–342.

    Article  CAS  Google Scholar 

  28. Rosenfeld, Y. and Ashcroft, N. W. (1979) Theory of simple classical fluids: universality in the short-range structure, Phys. Rev. A 20, 1208–1235.

    CAS  Google Scholar 

  29. Ballone, P., Pastore, G., and Tosi, M. P. (1984) Structure and thermodynamic properties of molten alkali chlorides, J. Chem. Phys. 81, 3174–3180.

    Article  CAS  Google Scholar 

  30. Ross, M. and Rogers, F. J. (1985) Structure of dense shock-melted alkali halides: evidence for a continuous pressure-induced structural transition in the melt, Phys. Rev. B 31, 1463–1468.

    CAS  Google Scholar 

  31. D’Aguanno, B., Rovere, M., Tosi, M. P., and March, N. H. (1983) Freezing of ionic melts into normal and superionic phases, Phys. Chem. Liquids 13, 113–122.

    Article  CAS  Google Scholar 

  32. Fisher, M. E. (1999) Understanding criticality: simple fluids and ionic fluids, in New Approaches to Problems in Liquid State Theory, Kluwer, Dordrecht, 3–8.

    Chapter  Google Scholar 

  33. Mott, N. F. (1974) Metal-Insulator Transitions, Taylor and Francis, London.

    Google Scholar 

  34. Fisher, M. E. and Zuckerman, D. M. (1998) Exact thermodynamic formulation of chemical association, J. Chem. Phys. 109, 7961–7981.

    Article  CAS  Google Scholar 

  35. Akdeniz, Z. and Tosi, M. P. (1999) A refined ionic model for clusters relevant to molten chloroaluminates, Z. Naturforsch. 54 a, 180–186.

    Google Scholar 

  36. Akdeniz, Z., Çaliskan, M., ÇiÇek, Z., and Tosi, M. P. (2000) Polymeric structures in aluminium and gallium halides, Z. Naturforsch. 55 a, 575–580.

    Google Scholar 

  37. Gilbert, B., Mamantov, G., and Begun, G. N. (1975) Raman spectra of aluminum fluoride containing melts and the ionic equilibrium in molten cryolite type mixtures, J. Chem. Phys. 62, 950–955

    Article  CAS  Google Scholar 

  38. Gilbert, B. and Materne, T. (1990) Reinvestigation of molten fluoroaluminates Raman spectra: the question of the existence of AlF5 2- ions, Appl. Spectrosc. 44, 299–305.

    Article  CAS  Google Scholar 

  39. Robert, E., Olsen, J. E., Danek, V., Tixhon, E., Φstvold, T., and Gilbert, B. (1997) Structure and thermodynamics of alkali fluorides-aluminum fluoride-alumina melts. Vapour pressue, solubility, and Raman spectroscopic studies, J. Phys. Chem. B101, 9447–9457.

    Article  CAS  Google Scholar 

  40. Akdeniz, Z., ÇiÇek, Z., and Tosi, M. P. (1999) Theoretical evidence for the stability of the (AlF5)2- complex anion, Chem. Phys. Lett. 308, 479–485.

    Article  CAS  Google Scholar 

  41. Brooker, M. H., and Papatheodorou, G. N. (1983) Vibrational spectroscopy of molten salts and related glasses and vapors, Adv. Molten Salt Chem. 5, 26–184.

    CAS  Google Scholar 

  42. Grjotheim, K., Krohn, C., Malinovsky, M., Matiasovsky, K., and Thonstad, J. (1982) Aluminium Electrolysis — Fundamentals of the Hall-Héroult Process, Aluminium-Verlag, Dusseldorf.

    Google Scholar 

  43. Akdeniz, Z. and Tosi, M. P. (1991) Structure breaking and electron localization in liquid cryolite-sodium solutions, Phil. Mag. B64, 167–179.

    Article  CAS  Google Scholar 

  44. Akdeniz, Z. and Tosi, M. P. (1989) Stability diagrams for fourfold coordination of polyvalent metal ions in molten mixtures of halide salts, J. Phys.: Condens. Matter 1, 2381–2394.

    Article  CAS  Google Scholar 

  45. Akdeniz, Z., Li, W., and Tosi, M. P. (1988) Classification of stability for tetrahedral halocomplexes in molten-salt mixtures, Europhys. Lett. 5, 613–617.

    Article  CAS  Google Scholar 

  46. Trullas, J., Girò, A., and Silbert, M. (1990) Potentials and correlation functions for the copper-halide and silver-halide melts. II: Time correlation functions and ionic transport properties, J. Phys.: Condens. Matter 2, 6643–6650.

    Article  CAS  Google Scholar 

  47. Tankeshwar, K. and Tosi, M. P. (1991) Ionic diffusion in superionic-conductor melts, J. Phys.: Condens. Matter 3, 7511–7518.

    Article  CAS  Google Scholar 

  48. Tankeshwar, K. and Tosi, M. P. (1992) Theory of the Chemla effect in molten (Li,K)Cl, Solid State Commun. 84, 245–247.

    Article  CAS  Google Scholar 

  49. Ciccotti, G., Jacucci, G., and McDonald, I. R. (1976) Transport properties of molten alkali halides, Phys. Rev. A 13, 426–436.

    Article  CAS  Google Scholar 

  50. Sjöblom, C.-A. and Behn, A. (1968) Self-diffusion in molten zinc chloride, Z.Naturforsch. 23 a, 495–49

    Google Scholar 

  51. Tatlipinar, H., Amoruso, M., and Tosi, M. P. (2000) Ionic charge transport in strongly structured molten salts, Physica B 275, 281–284.

    CAS  Google Scholar 

  52. Hirschfelder, J. O., Curtiss, C. E., and Bird, R. B. (1964) Molecular Theory of Gases and Liquids, Wiley, New York.

    Google Scholar 

  53. Abe, Y. and Nagashima, A. (1981) The principle of corresponding states for alkali halides viscosity, J. Chem. Phys. 75, 3977–3985.

    Article  CAS  Google Scholar 

  54. Voronel, A., Veliyulin, E., Grande, T., and Φye, H. A. (1997) Universal viscosity behaviour of regular and glassforming ionic melts, J. Phys.: Condens. Matter 9, L247–L249.

    Article  CAS  Google Scholar 

  55. Voronel, A., Veliyulin, E., Machvariani, V. Sh., Kisliuk, A., and Quitmann, D. (1998) Fractional Stokes-Einstein law for ionic transport in liquids, Phys. Rev. Lett. 80, 2630–2633.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tosi, M.P. (2002). Molten Salts: Fundamentals. In: Gaune-Escard, M. (eds) Molten Salts: From Fundamentals to Applications. NATO Science Series, vol 52. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0458-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0458-9_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0459-9

  • Online ISBN: 978-94-010-0458-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics