Skip to main content

Part of the book series: NATO Science Series ((NAIV,volume 7))

Abstract

Human activities release large amounts of exchangeable elements into the environment and have become a major factor in altering biogeochemical cycles. This alteration is progressively affecting the long-established steady equilibrium between the Earth’s processes and biological evolution [50]. Increasing body burdens of potentially toxic elements in organisms, even from remote regions of the Northern Hemisphere far from significant sources of local pollution, have underlined the importance of establishing reliable monitoring systems at different scales. A reliable appraisal of pollutant concentrations in such an extremely variable compartment as the atmosphere needs a statistical approach based on a large number of samples in both time and space (see chapter 9, this volume). The high costs of establishing and managing automatic monitoring networks often limit the number of sampling stations and/or the number of pollutants considered. Thus, although very reliable, data from instrumental recording may be statistically weak and their integration with diffusion models cannot give reliable information about the deposition and impact of atmospheric pollutants on terrestrial ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Addison, P.A. and Puckett, K.J. (1980) Deposition of atmospheric pollutants as measured by lichen element content in the Athabasca oil sands area, Canadian Journal of Botany 58, 2323–2334.

    Article  CAS  Google Scholar 

  2. Baker, T.G. and Attiwill, P.M. (1987) Fluxes of elements in rain passing through forest canopies in south-eastern Australia, Biogeochemistry 4, 27–39.

    Article  CAS  Google Scholar 

  3. Bargagli, R. (1989) Determination of metal deposition patterns by epiphytic lichens, Toxicological and Environmental Chemistry 18, 249–256.

    Article  CAS  Google Scholar 

  4. Bargagli, R. (1990) Assessment of metal air pollution by epiphytic lichens: the incidence of crustal materials and of the possible uptake from substrate barks, Studia Geobotanica 10, 97–103.

    Google Scholar 

  5. Bargagli, R. (1995) The elemental composition of vegetation and the possible incidence of soil contamination of samples, The Science of the Total Environment 167, 121–128.

    Article  Google Scholar 

  6. Bargagli, R. (1998) Trace Elements in Terrestrial Plants: an Ecophysiological Approach to Biomonitoring and Biorecovery, Springer, Berlin.

    Google Scholar 

  7. Bargagli, R., Gasparo, D., Lazzarin, A., Lazzarin, G., Olivieri, S., and Tretiach, M. (1991) Lichens as indicators and monitors of atmospheric pollutants in NE Italy: preliminary data on the integrated testing system, Botanika Chronika 10, 977–982.

    Google Scholar 

  8. Bargagli, R., Iosco, F.P., and D’Amato, M.L. (1987) Zonation of trace metal accumulation in three species of epiphytic lichens belonging to the genus Parmelia, Cryptogamie, Bryologie et Lichenologie 8, 331–337.

    CAS  Google Scholar 

  9. Bargagli, R., Sanchez-Hernandez, J.C., and Monaci, F. (1999) Baseline concentrations of elements in the Antarctic macrolichen Umbilicaria decussata, Chemosphere 38, 475–487.

    Article  CAS  Google Scholar 

  10. Barkman, J.J. (1958) Phytosociology and Ecology of Cryptogamic Epiphytes, Van Gorcum, Assen.

    Google Scholar 

  11. Beckett, R.P. and Brown, D.H. (1983) Natural and experimentally-induced zinc and copper resistance in the lichen genus Peltigera, Annals of Botany 52, 43–50.

    CAS  Google Scholar 

  12. Beckett, R.P. and Brown, D.H. (1984) The control of cadmium uptake in the lichen genus Peltigera, Journal of Experimental Botany 35, 1071–1082.

    Article  CAS  Google Scholar 

  13. Beckett, P.J., Boileau, L.J.R., and Padovan, D. (1982) Lichens and mosses as monitors of industrial activity associated with uranium mining in northern Ontario, Canada. Part 2. Distance dependent uranium and lead accumulation pattern, Environmental Pollution 4, 91–107.

    CAS  Google Scholar 

  14. Bennett, J.P. (1995) Abnormal chemical element concentrations in lichens of Isle Royale National Park, Environmental and Experimental Botany 35, 259–277.

    Article  CAS  Google Scholar 

  15. Boileau, L.J.R., Nieboer, E., and Richardson, D.H.S. (1985) Uranium accumulation in the lichen Cladonia rangiferina. Part I. Uptake of cationic, neutral, and anionic forms of the uranyl ion, Canadian Journal of Botany 63, 384–389.

    Article  CAS  Google Scholar 

  16. Boileau, L.J.R., Nieboer, E., and Richardson, D.H.S. (1985) Uranium accumulation in the lichen Cladonia rangiferina. Part II. Toxic effects of cationic, neutral, and anionic forms of the uranyl ion, Canadian Journal of Botany 63, 390–397.

    Article  CAS  Google Scholar 

  17. Branquinho, C., Catarino, F., Brown, D.H., Pereira, M.J., and Soares, A. (1999) Improving the use of lichens as biomonitors of atmospheric metal pollution, The Science of the Total Environment 232, 67–77.

    Article  CAS  Google Scholar 

  18. Brown, D.H. (1987) The location of mineral elements in lichens; implications for metabolism, in E. Peveling (ed.), Progress and Problems in Lichenology in the Eighties, Bibliotheca Lichenologica 25, 361–375.

    Google Scholar 

  19. Brown, D.H. and Beckett, R.P. (1984) Uptake and effect of cations on lichen metabolism, Lichenologist 16, 173–188.

    Article  CAS  Google Scholar 

  20. Brown, D.H. and Brown, R.M. (1991) Mineral cycling and lichens: the physiological basis, Lichenologist 23, 293–307.

    Google Scholar 

  21. Brown, D.H., Avalos, A., Miller, J.E., and Bargagli, R. (1994) Interactions of lichens with their mineral environment, Cryptogamic Botany 4, 135–142.

    Google Scholar 

  22. Brown, D.H., Standell, C.J., and Miller, J.E. (1995) Effects of agricultural chemicals on lichens, Cryptogamie Botany 5, 220–223.

    Google Scholar 

  23. Calliari, I., Caniglia, G., Nardi, S., Tollardo, A.M., and Callegaro, R. (1995) EDXRS study of lichens as biomonitors and effect of washing procedure on element concentrations, X-Ray Spectrometry 24, 143–146.

    Article  CAS  Google Scholar 

  24. De Bruin, M. and Hackenitz, E. (1986) Trace element concentrations in epiphytic lichens and bark substrates, Environmental Pollution 11, 153–160.

    Google Scholar 

  25. Deruelle, S. (1984) L’utilisation des lichens pour la détection et l’estimation de la pollution par le plomb, Bulletin Ecologie 15, 1–6.

    Google Scholar 

  26. Erdman, J.A., Gough, L.P., and White, P.W. (1977) Calcium oxalate as source of high ash yields in the terricolous lichen Parmelia chlorochroa, The Bryologist 80, 334–339.

    Article  CAS  Google Scholar 

  27. Farrar, J.F. (1976) The uptake and metabolism of phosphate by the lichen Hypogymnia physodes, New Phytologist 77, 127–134.

    Article  CAS  Google Scholar 

  28. Ferry, B.W. and Baddeley, M.S. (1976) Sulphur dioxide uptake in lichens, in D.H. Brown, D.H. Richardson and R.H. Bailey (eds.), Lichenology: Progress and Problems, Academic Press, London, pp. 407–418.

    Google Scholar 

  29. Folkeson, L. (1984) Deterioration of the moss and lichen vegetation in a forest polluted by heavy metals, Ambio 13, 37–39.

    CAS  Google Scholar 

  30. France, R. and Coquery, M. (1996) Lead concentrations in lichens from the Canadian high Arctic in relation to the latitudinal pollution gradients, Water, Air, and Soil Pollution 90, 469–474.

    Article  CAS  Google Scholar 

  31. Gadd, G.M. (1993) Interactions of fungi with toxic metals, New Phytologist 124, 25–60.

    Article  CAS  Google Scholar 

  32. Gailey, F.A.Y. and Lloyd, O.L. (1993) Spatial and temporal patterns of airborne metal pollution: the value of low technology sampling to an environmental epidemiology study, The Science of the Total Environment 133, 201–219.

    Article  CAS  Google Scholar 

  33. Garty, J. (2000) Environment and elemental content of lichens, in B. Markert and K. Friese (eds.), Trace Elements-Their Distribution and Effects in the Environment, Elsevier, Amsterdam, pp. 245–276.

    Chapter  Google Scholar 

  34. Garty, J., Galun, M., and Kessel, M. (1979) Localization of heavy metals and other elements accumulated in the lichen thalli, New Phytologist 82, 159–168.

    Article  CAS  Google Scholar 

  35. Garty, J., Karary, Y., and Harel, J. (1993) The impact of air pollution on the integrity of cell membranes and chlorophyll in the lichen Ramalina duriaei (De Not.) Bagl. transplanted to industrial sites in Israel, Archives of Environmental Contamination and Toxicology 24, 455–460.

    Article  CAS  Google Scholar 

  36. Gonzáles, C.M. and Pignata, M.L. (1997) Chemical response of the lichen Punctelia subrudecta (Nyl.) Krog transplanted close to a power station in an urban-industrial environment, Environmental Pollution 97, 195–203.

    Article  Google Scholar 

  37. Gough, L.P., Severson, R.C., and Jackson, L.L. (1988) Determining baseline element composition of lichens. 1. Parmelia sulcata at the Theodore Roosevelt National Park, North Dakota, Water, Air, and Soil Pollution 38, 157–167.

    CAS  Google Scholar 

  38. Goyal, R. and Seaward, M.R.D. (1982) Metal uptake in terricolous lichens. II. Translocation in the thallus of Peltigera canina, New Phytologist 90, 85–98.

    Article  CAS  Google Scholar 

  39. Hale, M.E. and Lawrey, J.D. (1985) Annual rate of lead accumulation in the lichen Pseudoparmelia baltimorensis, The Bryologist 88, 5–7.

    Article  Google Scholar 

  40. Halonen, P., Hyvärinen, P., and Kauppi, M. (1993) Emission related and repeated monitoring of element concentrations in the epiphytic lichen Hypogymnia physodes in a coastal area, W Finland, Annates Botanici Fennici 30, 251–261.

    CAS  Google Scholar 

  41. Holopainen, T. (1984) Types and distribution of ultrastructural symptoms in epiphytic lichens in several urban and industrial environments in Finland, Annates Botanici Fennici 21, 213–229.

    Google Scholar 

  42. Král, R., Kryzová, L., and Liška, J. (1989) Background concentrations of lead and cadmium in the lichen Hypogymnia physodes at different altitudes, The Science of the Total Environment 84, 201–209.

    Article  Google Scholar 

  43. Krouse, H.R. (1977) Sulphur isotope abundance elucidate uptake of atmospheric sulphur emissions by vegetation, Nature 265, 45–46.

    Article  CAS  Google Scholar 

  44. Krouse, H.R. and Case, J.W. (1981) Sulphur isotope ratios in water, air and vegetation near Teepee Creek gas plant, Alberta, Water, Air and Soil Pollution 15, 11–28.

    Article  CAS  Google Scholar 

  45. Laaksovirta, K. and Olkkonen, H. (1979) Effect of air pollution on epiphytic lichen vegetation and element contents of a lichen and pine needles at Valkeakoski, S. Finland, Annates Botanici Fennici 16, 285–296.

    Google Scholar 

  46. Loppi, S., Pirintsos, S.A., and De Dominicis, V. (1999) Soil contribution to the elemental composition of epiphytic lichens (Tuscany, central Italy), Environmental Monitoring and Assessment 58, 121–131.

    Article  CAS  Google Scholar 

  47. Lounamaa, K.J. (1965) Studies on the content of iron, manganese and zinc in macrolichens, Annates Botanici Fennici 2, 127–137.

    CAS  Google Scholar 

  48. Macnair, M.R. and Baker, A.J.M. (1994) Metal-tolerant plants: an evolutionary perspective, in M.E. Farago (ed.), Plants and the Chemical Elements. Biochemistry, Uptake, Tolerance and Toxicity, VCH, Weinheim, pp. 67–85.

    Chapter  Google Scholar 

  49. Makholm, M.M. and Bennett, J.P. (1998) Mercury accumulation in transplanted Hypogymnia physodes lichens downwind of Wisconsin chlor-alkali plant, Water, Air, and Soil Pollution 102, 427–436.

    Article  CAS  Google Scholar 

  50. Markert, B. (1997) Distribution and biogeochemistry of inorganic chemicals in the environment, in G. Schürmann and B. Markert. (eds.), Ecotoxicology. Ecological Fundamentals, Chemical Exposure, and Biological Effects, Wiley, New York, pp. 165–222.

    Google Scholar 

  51. Monna, F., Aiuppa, A., Varrica, D., and Dongarrà, G. (1999) Pb isotope composition in lichens and aerosols from eastern Sicily: insights into the regional impact of volcanoes and environment, Environmental Science and Technology 33, 2517–2523.

    Article  CAS  Google Scholar 

  52. Munger, J.W., Jacob, D.J., Waldman, J.M., and Hoffman, M.R. (1983) Fog water chemistry in an urban atmosphere, Journal of Geophysical Research 88, 5109–5121.

    Article  CAS  Google Scholar 

  53. Nash, T.H. III (1996) Nutrients, elemental accumulation and mineral cycling, in T.H. III Nash (ed.), Lichen Biology, University Press, Cambridge, pp.136–153.

    Google Scholar 

  54. Nash, T.H. III and Gries, C. (1995) The use of lichens in atmospheric deposition studies with an emphasis on the Arctic, The Science of the Total Environment 160/161, 729–736.

    Article  Google Scholar 

  55. Nieboer, E. and Richardson, D.H.S. (1980) The replacement of nondescript term ‘heavy metals’ by a biologically and chemically significant classification of metal ions, Environmental Pollution 1, 3–26.

    CAS  Google Scholar 

  56. Nieboer, E. and Richardson, D.H.S. (1981) Lichens as monitors of atmospheric deposition, in S.J. Eisenreich (ed.), Atmospheric Pollutants in Natural Waters, Ann Arbor Science, Ann Arbor, Mich, pp.339–388.

    Google Scholar 

  57. Nieboer, E., Padovan, D., Lavoie, P., and Richardson, D.H.S. (1984) Anion accumulation by lichens. II. Competition and toxicity studies involving arsenate, phosphate, sulphate and sulphite, New Phytologist 96, 83–93.

    Article  CAS  Google Scholar 

  58. Nieboer, E., Richardson, D.H.S., Boileau, L.J.R., Beckett, P.J., Lavoie, P., and Padovan, D. (1982) Lichens and mosses as monitors of industrial activity associated with uranium mining in northern Ontario, Canada. Part 3. Accumulation of iron and titanium and their mutual dependence, Environmental Pollution, Ser. B 4: 181–192.

    Article  CAS  Google Scholar 

  59. Nieboer, E., Richardson, D.H.S., Lavoie, P., and Padovan, D. (1979) The role of metal-ion binding in modifying the toxic effects of sulphur dioxide on the lichen Umbilicaria muhlenbergii. I. Potassium efflux studies, New Phytologist 82, 621–632.

    Article  CAS  Google Scholar 

  60. Nimis, P.L. and Bargagli, R. (1999) Linee-guida per l’utilizzo di licheni epifiti come bioaccumulatori di metalli in traccia, in C. Piccini and S. Salvati, (eds.), Atti Workshop “Biomonitoraggio della Qualità dell’ Aria sul Territorio Nazionale ”, Agenzia Nazionale per la Protezione dell’Ambiente, Roma, pp. 279–287.

    Google Scholar 

  61. Nimis, P.L., Castello, M, and Perotti, M. (1993) Lichens as bioindicators of heavy metal pollution: a case study at La Spezia (N. Italy), in B. Markert (ed.), Plants as Biomonitors. Indicators for Heavy Metals in the Terrestrial Environment, VCH, Weinheim, pp. 265–284.

    Google Scholar 

  62. Nimis, P.L., Lazzarin, G., Lazzarin, A., and Skert, N. (2000) Biomonitoring of trace elements with lichens in Veneto, The Science of the Total Environment 255, 97–111.

    Article  CAS  Google Scholar 

  63. Olmez, I., Gulovali, M.C., and Gordon, G.E. (1985) Trace element concentrations in lichens near a coal-fired power plant, Atmospheric Environment 19, 1663–1669.

    Article  CAS  Google Scholar 

  64. Pakarinen, P. (1981) Nutrient and trace metal content and retention in reindeer lichen carpets of Finnish ombrotrophic bogs, Annates Botanici Fennici 18, 265–274.

    CAS  Google Scholar 

  65. Perkins, D.F., Millar, R.G., and Neep, P.E. (1980) Accumulation of airborne fluoride by lichens in the vicinity of an aluminium production plant, Environmental Pollution, Ser.A 21, 155–168.

    Article  CAS  Google Scholar 

  66. Pilegaard, K. (1979) Heavy metals in bulk precipitation and transplanted Hypogymnia physodes and Dicranoweisia cirrata in the vicinity of a Danish steelwork, Water, Air and Soil Pollution 11, 77–91.

    Article  CAS  Google Scholar 

  67. Pilegaard, K. (1987) Biological monitoring of airborne deposition within and around the Ilimaussaq intrusion, Southwest Greenland, Bioscience 24, 1–28.

    Google Scholar 

  68. Puckett, K.J. (1985) Temporal variation in lichen element levels, in D.H. Brown (ed.), Lichen Physiology and Cell Biology, Plenum Press, New York, pp. 211–225.

    Chapter  Google Scholar 

  69. Puckett, K.J. (1988) Bryophytes and lichens as monitors of metal deposition, in T.H. III Nash and V. Wirth (eds.), Lichens, Bryophytes and Air Quality, Bibliotheca Lichenologica 30, Cramer, Berlin, pp. 231–267.

    Google Scholar 

  70. Puckett, K.J. and Finegan, E.J. (1980) An analysis of the element contents of lichens from the Northwest Territories, Canada, Canadian Journal of Botany 58, 2073–2089.

    Article  CAS  Google Scholar 

  71. Purvis, O.W. (1996) Interactions of lichens with metals, Science Progress 79, 283–309.

    CAS  Google Scholar 

  72. Purvis, O.W., Elix, J.A., Broomhead, J.A. and Jones, G.C. (1987) The occurrence of copper-norstictic acid in lichens from cupriferous substrata, Lichenologist 19, 193–203.

    Article  CAS  Google Scholar 

  73. Purvis, O.W., Williamson, B.J., Bartok, K., and Zoltani, N. (2000) Bioaccumulation of lead by the lichen Acarospora smaragdula from smelter emissions, New Phytologist 147, 591–599.

    Article  CAS  Google Scholar 

  74. Rao, D.N., Robitaille, G., and Le Blanc, F. (1977) Influence of heavy metal pollution on lichens and bryophytes, Journal of the Hattori Botanical Laboratory 42, 213–239.

    CAS  Google Scholar 

  75. Richardson, D.H.S., Kiang, S., Ahmadjian, V., and Nieboer, E. (1985) Lead and uranium uptake by lichens, in D.H. Brown (ed.), Lichen Physiology and Cell Biology, Plenum Press, New York, pp. 227–246.

    Chapter  Google Scholar 

  76. Richardson, D.H.S., Nieboer, E., Lavoie, P., and Padovan, D. (1984) Anion accumulation by lichens. I. The characteristics and kinetics of arsenate uptake by Umbilicaria muhlenbergii, New Phytologist 96, 71–82.

    Article  CAS  Google Scholar 

  77. Sarret, G., Manceau, A., Cuny, D., Van Haluwyn, C., Déruelle, S., Hazemann, J.-L., Soldo, Y., Eybert-Bérard, L., and Menthonnex, J.-J. (1998) Mechanisms of lichen resistance to metallic pollution, Environmental Science and Technology 32, 3325–3330.

    Article  CAS  Google Scholar 

  78. Showman, R.E. and Hendricks, J.C. (1989) Trace element content of Flavoparmelia caperata (L.) Hale due to industrial emissions, Journal of the Air Pollution Control Association 39, 317–320.

    CAS  Google Scholar 

  79. Sloof, J.E. (1995) Lichens as quantitative biomonitors for atmospheric trace-element deposition, using transplants, Atmospheric Environment 29, 11–20.

    Article  CAS  Google Scholar 

  80. Sloof, J.E. and Wolterbeeck, B.T.H. (1991) National trace-element air pollution monitoring survey using epiphytic lichens, Lichenologist 23, 139–165.

    Article  Google Scholar 

  81. Sloof, J.E. and Wolterbeek, B.T.H. (1993) Substrate influence on epiphytic lichens, Environmental Monitoring and Assessment 25, 225–234.

    Article  CAS  Google Scholar 

  82. Søchting, U. (1995) Lichens as monitors of nitrogen deposition, Cryptogamic Botany 5, 264–269.

    Google Scholar 

  83. Søchting, U. and Jonsen, I. (1978) Lichen transplants as biological indicators of SO2 air pollution in Copenhagen, Bulletin Environmental Contamination and Toxicology 19, 1–6.

    Article  Google Scholar 

  84. Solberg, Y. (1979) Studies on the chemistry of lichens, XX. The element concentration of the lichen species Alectoria fremontii and its associated bark substrate of Pinus silvestris, Zeitschrift für Naturforschung, Part C 34, 1275–1277.

    Google Scholar 

  85. Steinnes, E. and Krog, H. (1977) Mercury, arsenic and selenium fall-out from an industrial complex studied by means of lichen transplants, Oikos 28, 160–164.

    Article  CAS  Google Scholar 

  86. Takala, K. and Olkkonen, H. (1976) Lead content of lichen Pseudevernia furfuracea in the urban area of Kuopio, in L. Karenlampi (ed.), Proceedings of Kuopio Meeting on Plant Damage caused by Air Pollution, Kuopio, Finland, pp. 64–67.

    Google Scholar 

  87. Takala, K., Kauranen, P., and Olkkonen, H. (1978) Fluorine content of two lichen species in the vicinity of a fertilizer factory, Annates Botanici Fennici 15, 158–166.

    CAS  Google Scholar 

  88. Tuba, Z., Csintalan, Z., Nagy, Z., Szente, K., and Takäcs, Z. (1994) Sampling of terricolous lichen and moss species for trace element analysis, with special reference to bioindication of air pollution, in B. Markert (ed.), Environmental Sampling for Trace Analysis, VCH, Weinheim, pp. 415–434.

    Chapter  Google Scholar 

  89. Vestergaard N.K., Stephansen, V., and Rasmussen, L. (1986) Airborne heavy metal pollution in the environment of a Danish steel plant, Water, Air and Soil Pollution 27, 1807–1814.

    Article  Google Scholar 

  90. Vtorova, V.N. and Marken, B. (1995) Multi-element analysis of plants of forest ecosystems in Eastern Europe, Izvestiya RAN, Seriya Biologicheskaya 4, 447–454.

    Google Scholar 

  91. Wadleigh, M.A. and Blake, D.M. (1999) Tracing sources of atmospheric sulphur using epiphytic lichens, Environmental Pollution 106, 265–271.

    Article  CAS  Google Scholar 

  92. Walther, D.A., Ramelov, G.J., Beck, J.N., Young, J.C, Callahan, J.D., and Marcon, M.F. (1990) Temporal changes in metal levels of the lichen Parmotrema praesorediosum and Ramalina stenospora, southwest Louisiana, Water, Air and Soil Pollution 53, 189–200.

    Article  CAS  Google Scholar 

  93. Wells, J.M., Brown, D.H., and Beckett, R.P. (1995) Kinetic analysis of Cd uptake in Cd-tolerant and intolerant populations of the moss Rhytidiadelphus squarrosus (Hedw.) Warnst, and the lichen Peltigera membranacea (Ach.) Nyl., New Phytologist 129, 477–486.

    Article  CAS  Google Scholar 

  94. Winner, W.E., Atkinson, C.J., and Nash, T.H. III (1988) Comparison of SO2 absorption capacities of mosses, lichens and vascular plants in diverse habitats, in T.H. III Nash and V. Wirth (eds.), Lichens, Bryophytes and Air Quality, Bibliotheca Lichenologica 30, J. Cramer, Berlin-Stuttgart, pp. 217–230.

    Google Scholar 

  95. Wittig, R. (1993) General aspects of biomonitoring heavy metals by plants, in B. Markert (ed.), Plants as Biomonitors. Indicators for Heavy Metals in the Terrestrial Environment, VCH, Weinheim, pp. 3–27.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bargagli, R., Mikhailova, I. (2002). Accumulation of Inorganic Contaminants. In: Nimis, P.L., Scheidegger, C., Wolseley, P.A. (eds) Monitoring with Lichens — Monitoring Lichens. NATO Science Series, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0423-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0423-7_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0430-8

  • Online ISBN: 978-94-010-0423-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics