Skip to main content

Chemical evolution of the Moon and the terrestrial planets

  • Chapter
The Century of Space Science
  • 1211 Accesses

Abstract

Knowledge of the chemical evolution of the Moon, Mercury, Venus, and Mars and the contributions to this knowledge from space missions vary greatly from body to body. Without doubt the Moon is a very special case. The six Apollo missions that landed there returned a total of 381.7 kg of lunar material. The first of these missions was launched on 16 July 1969 and returned to Earth on 24 July 1969. It was followed by Apollo 12, 14, 15, 16, and 17, the last of which was launched on 7 December 1972. Apollo 15, 16, and 17 carried a rover vehicle that extended the range of the astronauts considerably. During the Apollo 17 mission the rover covered a total of 30.5 km. The Russian uncrewed missions Luna 16, Luna 20, and Luna 24 returned about 370 g of lunar material. The robot rover of the Luna 17 mission traveled 10.5 km in 322 days and that of Luna 21 traveled 37 km in 139 days. In addition, 13 lunar meteorites totaling 4.1 kg have been recognized and studied thoroughly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adler, I., Trombka, J.I., Schmadebeck, R., Lowman, P., Blodget, H., Yin, L., Eller, E., Podwysocki, M., Weidner, J.R., Bickel, A.L., Lum, R.K.L., Gerard, J., Gorenstein, P., Bjorkholm, P. and Harris, B. (1973). Results of the Apollo 15 and 16 x-ray experiment. Geochimica et Cosmochimica Acta, Supplement 4, 2783–2791.

    ADS  Google Scholar 

  • Arnold, J.R. (1979). Ice in the lunar polar regions. Journal of Geophysical Research, 84, 5659–5668.

    Article  ADS  Google Scholar 

  • Anders, E. (1978). Procrustean science: Indigenous siderophiles in the lunar highlands, according to Delano and Ringwood. Geochimica et Cosmochimica Acta, Supplement 10, 161–184.

    Google Scholar 

  • Anders, E. and Ebihara, M. (1982). Solar-system abundances of the elements. Geochimica et Cosmochimica Acta, 46, 2363–2380.

    Article  ADS  Google Scholar 

  • Anders, E. and Grevesse, N. (1989). Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta, 53, 197–214.

    Article  ADS  Google Scholar 

  • Anderson, J.D., Colombo, G., Esposito, P.B., Lau, E.L. and Trager, G.B. (1987). The mass, gravity field and ephemeris of Mercury. Icarus, 71, 337–349.

    Article  ADS  Google Scholar 

  • Banin, A., Clark, B.C. and Wänke, H. (1992). Surface chemistry and mineralogy. In H.H. Kieffer, B.M. Jakosky, C.W. Snyder and M.S. Matthews (eds), University of Arizona Press, Mars, Tucson AZ, pp. 594–625.

    Google Scholar 

  • Becker, R.H. and Pepin, R.O. (1984). The case for a Martian origin of the shergottites. Nitrogen and noble gases in EETA 79001. Earth and Planetary Science Letters, 69, 225–242.

    Article  ADS  Google Scholar 

  • Binder, A.B. (1998). Lunar Prospector: Overview. Science, 281, 1475–1476.

    Article  ADS  Google Scholar 

  • Bogard, D.D. and Johnson, P. (1983). Martian gases in an Antarctic meteorite? Science, 221, 651–654.

    Article  ADS  Google Scholar 

  • Bouchet, M. and Kaplan, G. (1971). Spark mass spectrometric analysis of major and minor elements in six lunar samples. Proceedings of the 2nd Lunar Science Conference, MIT Press, Vol. 2, pp. 1247–1252.

    ADS  Google Scholar 

  • Brückner, J., Dreibus, G., Lugmair, G.W., Rieder, R., Wänke, H. and Economou, T. (1999). Chemical composition of the Martian surface as derived from Pathfinder, Viking, and Martian meteorite data (abstract no. 1250). Lunar and Planetary Science XXX, Lunar and Planetary Institute, Houston, TX (CD-ROM).

    Google Scholar 

  • Brückner, J., Dreibus, G., Rieder, R. and Wänke, H. (2001). Revised data of the Mars Pathfinder alpha proton X-ray spectrometer: Geochemical behavior of major and minor elements. (abstract no. 1293). Lunar and Planetary Science XXXII, Lunar and Planetary Institute, Houston, TX (CD-ROM).

    Google Scholar 

  • Carlson, R.W. and Lugmair, G.W. (1979). Sm-Nd constraints on early lunar differentiation and the evolution of KREEP. Earth and Planetary Science Letters, 45, 12–132.

    Article  Google Scholar 

  • Carlson, R.W. and Lugmair, G.W. (1981). Time and duration of lunar highland crust formation. Earth and Planetary Science Letters, 52, 22–238.

    Article  Google Scholar 

  • Cameron, A.G.W. (1973). Abundances of elements in solar system. Space Science Reviews, 15, 121–146.

    Article  ADS  Google Scholar 

  • Cameron, A.G.W., Fegley, Jr., B., Benz, W. and Slattery W.L. (1988). The strange density of Mercury: Theoretical considerations. In F. Vilas, C.R. Chapman and M.S. Matthews (eds), Mercury, University of Arizona Press, Tucson, AZ, pp. 692–708.

    Google Scholar 

  • Cameron, A.G.W. and Ward, W.R. (1976). The origin of the Moon (abstract). Lunar Science VII, Lunar Science Institute, Houston TX, pp. 120–122.

    Google Scholar 

  • Clark, B.C. and Baird, A.K. (1979). Is the Martian lithosphere sulfur rich? Journal of Geophysical Research, 84, 8395–8403.

    Article  ADS  Google Scholar 

  • Clark, B.C., Baird, A.K., Weldon, R.J., Tsusaki, D.M., Schnabel, L. and Candelaria, M.P. (1982). Chemical composition of Martian fines. Journal of Geophysical Research, 87, 10059–10067.

    Article  ADS  Google Scholar 

  • Clayton, R.N. and Mayeda, T.K. (1975). Genetic relations between the moon and meteorites. Proceedings of the 6th Lunar Science Conference, Geochimica et Cosmochimica Acta, Supplement 6, 1761–1768.

    Google Scholar 

  • Compston, W., Berry, H., Vernon, M.J., Chappell, B.W. and Kaye, M.J. (1971). Rubidium-strontium chronology and chemistry of lunar material from the ocean of storms. Proceedings of the 2nd Lunar Science Conference, MIT Press, Vol. 2, pp. 1471–1485.

    ADS  Google Scholar 

  • Cuttitta, F., Rose, H.J., Jr., Annell, C.S., Carron, M.K., Christian, R.P., Dwornik, E.J., Helz, A.W. and Ligon, D.T., Jr. (1971). Elemental composition of some Apollo 12 rocks and soils. Proceedings of the 2nd Lunar Science Conference, MIT Press, Vol. 2, pp. 1217–1229.

    ADS  Google Scholar 

  • Delano, J.W. (1985). Mare volcanic glasses, II: Abundances of trace Ni and the composition of the Moon (abstract). Lunar and Planetary Science XVI, Lunar and Planetary Institute, Houston, TX, pp. 179–180.

    Google Scholar 

  • Delano, J.W. and Ringwood, A.E. (1978). Siderophile elements in lunar highlands: Nature of the indigenous component and implications of the origin of the Moon. Geochimica et Cosmochimica Acta, Supplement 10, 111–159.

    Google Scholar 

  • Dreibus, G., Brückner, J. and Wänke, H. (2000). Phosphorous in Martian rocks and soils and the global surface chemistry of Mars as derived from APXS on Pathfinder (abstract no. 1127). Lunar and Planetary Science XXXI, Lunar and Planetary Institute, Houston, TX, (CD-ROM).

    Google Scholar 

  • Dreibus, G., Jagoutz, E., Spettel, B. and Wänke, H. (1996). Phosphate-mobilization on Mars? Implication from leach experiments on SNCs. Lunar and Planetary Science XXVII, Lunar and Planetary Institute, Houston, TX, pp. 323–324.

    Google Scholar 

  • Dreibus, G., Palme, H., Rammensee, W., Spettel, B. and Wänke, H. (1981). On the mobilization and redistribution of Au and other siderophiles in lunar highland materials. Lunar and Planetary Science XII, Lunar and Planetary Institute, Houston, TX, pp. 240–242.

    Google Scholar 

  • Dreibus, G. and Wänke, H. (1987). Volatiles on Earth and Mars: A comparison. Icarus, 71, 225–240.

    Article  ADS  Google Scholar 

  • Eberhardt, P., Geiss, J., Graf, H., Grögler, N., Krähenbühl, U., Schwaller, H., Schwarzmüller, J. and Stettler, A. (1970). Trapped solar wind noble gases, exposure age and K/Ar age in Apollo 11 lunar fine material. Geochimica et Cosmochimica Acta, Supplement 1, 1037–1070.

    ADS  Google Scholar 

  • Eberhardt, P., Geiss, J. and Grögler, N. (1965). Further evidence on the origin of trapped gases in the meteorite Khor Temiki. Journal of Geophysical Research, 70, 4375–4378.

    Article  ADS  Google Scholar 

  • Ehmann, W.D. and Morgan, J.W. (1971). Major element abundance in Apollo 12 rocks and fines by 14MeV neutron activation. Proceedings of the 2nd Lunar Science Conference, MIT Press, Vol. 2, pp. 1237–1245.

    ADS  Google Scholar 

  • Epstein, S. and Taylor, H.P. (1970). The concentration and isotopic composition of hydrogen, carbon and silicon in Apollo 11 lunar rocks and minerals. Geochimica et Cosmochimica Acta, Supplement 1, 1085–1096.

    ADS  Google Scholar 

  • Feldman, W.C., Lawrence, D.J., Elphic, R.C., Barraclough, B.L., Maurice, S., Genetay, I. and Binder, A.B. (2000). Polar hydrogen deposits on the Moon. Journal of Geophysical Research, 105, 4175–4195.

    Article  ADS  Google Scholar 

  • Feldman, W.C., Maurice, S., Binder A B., Barraclough, B.L., Elphic, R.C. and Lawrence, D.J. (1998). Fluxes of fast and epithermal neutrons from Lunar Prospector: Evidence for water ice at the lunar poles. Science, 281, 1496–1500.

    Article  ADS  Google Scholar 

  • Ganapathy, R., Keays, R.R., Laul, J.C. and Anders, E. (1970). Trace elements in Apollo 11 lunar rocks: Implications for meteorite influx and origin of the moon. Geochimica et Cosmochimica Acta, Supplement 1, 1117–1142.

    ADS  Google Scholar 

  • Gast, P.W. (1972). The chemical composition and structure of the Moon. The Moon, 5, 121–148.

    Article  ADS  Google Scholar 

  • Gast, P.W. and Hubbard, N.J. (1970). Abundance of alkali metals, alkaline and rare earths and strontium-87/strontium-86 ratios in lunar samples. Science, 167, 485–487.

    Article  ADS  Google Scholar 

  • Gast, P.W., Hubbard, N.J. and Wiesmann, H. (1970). Chemical composition and petrogenesis of basalts from Tranquillity Base. Geochimica et Cosmochimica Acta, Supplement 1, 1143–1163.

    ADS  Google Scholar 

  • Goettel, K.A. (1988). Present bounds on the bulk composition of Mercury: Implications for planetary formation processes. In F. Vilas, C.R. Chapman and M.S. Matthews (eds), Mercury, University of Arizona Press, Tucson, AZ, pp. 613–621.

    Google Scholar 

  • Golombek, M.P., Anderson, R.C., Barnes, J.R., Bell, III, J.F., Bridges, N.T., Britt, D.T., Brückner, J., Cook, R.A., Crisp, D., Crisp, J.A., Economou, T., Folkner, W.M., Greeley, R., Haberle, R.M., Hargraves, R.B., Harris, J.A., Haldemann, A.F.C., Herkenhoff, K.E., Hviid, S.F., Jaumann, R., Johnson, J.R., Kallemeyn, P.H., Keller, H.U., Kirk, R.L., Knudsen, J.M., Larsen, S., Lemmon, M.T., Madsen, M.B., Magalhaes, J.A., Maki, J.N., Malin, M.C., Manning, R.M., Matijevic, J., McSween, H.Y., Jr., Moore, H.J., Murchie, S.L., Murphy, J.R., Parker, T.J., Rieder, R., Rivellini, T.P., Schofield, J.T., Seiff, A., Singer, R.B., Smith, P.H., Soderblom, L.A., Spencer, D.A., Stoker, C.R., Sullivan, R., Thomas, N., Thurman, S.W., Tomasko, M.G., Vaughan, R.M., Wänke, H., Ward, A.W. and Wilson, G.R. (1999). Overview of the Mars Pathfinder mission: Launch through landing, surface operations, data sets and science results. Journal of Geophysical Research, 104, E4, 8523–8553.

    Article  ADS  Google Scholar 

  • Golombek, M.P., Cook, R.A., Economou, T., Folkner, W.M., Haldemann, A.F.C., Kallemeyn, P.H., Knudsen, J.M., Manning, R.M., Moore, H.J., Parker, T.J., Rieder, R., Schofield, J.T., Smith, P.H. and Vaughan, R.M. (1997). Overview of the Mars Pathfinder mission and assessment of landing site predictions. Science, 278, 1743–1748.

    Article  ADS  Google Scholar 

  • Harmon, J.K., Slade, M.A., Vèlez, R.A., Crespo, A., Dryer, M.J. and Johnson, J.M. (1994). Radar mapping of Mercury’s polar anomalies. Nature, 369, 213–215.

    Article  ADS  Google Scholar 

  • Hartmann, W.K. and Davis, D.R. (1975). Satellite-sized planetesimals and lunar origin. Icarus, 24, 504–515.

    Article  ADS  Google Scholar 

  • Haskin, L.A., Helmke, P.A. and Allen, R.O. (1970). Rare earth elements in returned lunar samples. Science, 167, 487–490.

    Article  ADS  Google Scholar 

  • Hintenberger, H., Weber, H.W., Voshage, H., Wänke, H., Begemann, F. and Wlotzka, F. (1970). Concentrations and isotopic abundances of the rare gases, hydrogen and nitrogen in Apollo 11 lunar matter. Geochimica et Cosmochimica Acta, Supplement 1, 1269–1282.

    ADS  Google Scholar 

  • Hubbard, N.J. and Gast, P.W. (1971). Chemical composition and origin of nonmare lunar basalts. Proceedings of the 2nd Lunar Science Conference, MIT Press, Vol. 2, pp. 999–1020.

    ADS  Google Scholar 

  • Hubbard, N.J., Rhodes, J.M., Wiesmann, H., Shih, C.-Y. and Bansal, B.M. (1974). The chemical definition and interpretation of rock types returned from non-mare regions of the Moon. Geochimica et Cosmochimica Acta, Supplement 5, 1227–1246.

    Google Scholar 

  • Jagoutz, E. and Wänke, H. (1986). Sr and Nd isotopic systematics of Shergotty meteorite. Geochimica et Cosmochimica Acta, 50, 939–953.

    Article  ADS  Google Scholar 

  • Laul, J.C., Wakita, H., Showalter, D.L., Boynton, W.V. and Schmitt, R.A. (1972). Geochimica et Cosmochimica Acta, Supplement 3, 1181–1200.

    Google Scholar 

  • McCord, T.B. and Clark, R.N. (1979). The Mercury soil: Presence of Fe2+. Journal of Geophysical Research, 84, 7664–7668.

    ADS  Google Scholar 

  • Melosh, H. and Sonett, C.P. (1986). When worlds collide: Jetted vapor plumes and the Moon’s origin. In: W.K. Hartmann, R.J. Phillips and G.J. Taylor (eds), Origin of the Moon, Lunar Planetary Institute, Houston, TX, pp. 621–642.

    Google Scholar 

  • Metzger, A.E., Trombka, J.I., Peterson, L.E., Reedy, R.C. and Arnold, J.R. (1973). Lunar surface radioactivity: Preliminary results of the Apollo 15 and 16 gamma-ray spectrometer experiments. Science, 179, 800–803.

    Article  ADS  Google Scholar 

  • Morrison, G.H., Gerard, J.T., Potter, N.M., Gangadharam, E.V., Rothenberg, A.M. and Burdo, R.A. (1971). Elemental abundances of lunar soil and rocks from Apollo 12. Proceedings of the 2nd Lunar Science Conference, MIT Press, Vol. 2, pp. 1169–1185.

    ADS  Google Scholar 

  • Nyquist, L.E., Bogard, D.D., Wooden, J.L., Wiesmann, H., Shih, C.Y., Bansal, B.M. and McKay, G.A. (1979). Early differentiation, late mag-matism and recent bombardment of the shergottite parent body (abstract). Meteoritics, 14, 502.

    ADS  Google Scholar 

  • Palme, H. (1977). On the age of KREEP Geochimica et Cosmochimica Acta, 41, 1791–1801.

    Article  ADS  Google Scholar 

  • Palme, H., Spettel, B., Jochum, K.P., Dreibus, G., Weber, H., Weckwerth, G., Wänke, H., Bischoff, A. and Stöffler, D. (1991). Lunar highland meteorites and the composition of the lunar crust. Geochimica et Cosmochimica Acta, 55, 3105–3122.

    Article  ADS  Google Scholar 

  • Palme, H., Spettel, B., Wänke, H., Bischoff, A. and Stöffler, D. (1984). Early differentiation of the Moon: Evidence from trace elements in plagioclase. Journal of Geophysical Research, 89, C3-C15.

    Article  ADS  Google Scholar 

  • Palme, H., Suess, H.E. and Zeh, H.D. (1981). Abundances of the elements in the solar system. In: K. Schaifers and H.H. Vogt (eds) Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, Vol. 2 Astronomy and Astrophysics, Springer Verlag, Heidelberg, pp. 257–265.

    Google Scholar 

  • Palme, H. and Wänke, H. (1975). A unified trace element model for the evolution of the lunar crust and mantle. Geochimica et Cosmochimica Acta, Supplement 6, 1179–1202.

    Google Scholar 

  • Pepin, R.O. (1985). Evidence of Martian origins. Nature, 317, 473–475.

    Article  ADS  Google Scholar 

  • Philpotts, J.A. and Schnetzler, C.C. (1970). Potassium, rubidium, strontium, barium and rare earth concentrations in lunar rocks and separated phases. Science, 167, 493–405.

    Article  ADS  Google Scholar 

  • Rammensee, W. and Wänke, H. (1977). On the partition coefficient of tungsten between metal and silicate and its bearing on the origin of the Moon. Geochimica et Cosmochimica Acta, Supplement 8, 399–409.

    Google Scholar 

  • Rieder, R., Economou, T., Wänke, H., Turkevich, A., Crisp, J., Brückner, J., Dreibus, G. and McSween, H.Y., Jr. (1997). The chemical composition of Martian soil and rocks returned by the mobile alpha proton x-ray spectrometer: Preliminary results from the x-ray mode. Science, 278, 1771–1774.

    Article  ADS  Google Scholar 

  • Ringwood, A.E. (1979). On the Origin of Earth and Moon, Springer, New York.

    Book  Google Scholar 

  • Ringwood, A.E. and Kesson, S.E. (1977). Composition and origin of the Moon. Geochimica et Cosmochimica Acta, Supplement 8, 371–398.

    Google Scholar 

  • Ringwood, A.E., Seifert, S. and Wänke, H. (1986/1987). A komatiite component in Apollo 16 highland breccias: Implications for the nickel-cobalt systematics and bulk composition of the Moon. Earth Planetary Science Letters, 81, 105–117.

    Article  ADS  Google Scholar 

  • Schmitt, R.A., Smith, R.H., Lasch, J.E., Mosen, A.W., Olehy, D.A. and Vasilevskis, J. (1963). Abundance of fourteen rare-earth elements, scandium and yttrium in meteorites and terrestrial matter. Geochimica et Cosmochimica Acta, 27, 577–622.

    Article  ADS  Google Scholar 

  • Schmitt, R.A., Smith, R.H. and Olehy, D.A. (1964). Rare-earth, yttrium and scandium abundances in meteoritic and terrestrial matter-II. Geochimica et Cosmochimica Acta, 28, 67–86.

    Article  ADS  Google Scholar 

  • Schmitt, R.A., Wakita, H. and Rey, P. (1970). Abundandes of 30 elements in lunar rocks, soil, and core samples. Science, 167, 512–515.

    Article  ADS  Google Scholar 

  • Schubert, G., Ross, M.N., Stevenson, D.J. and Spohn, T. (1988). Mercury’s thermal history and the generation of its magnetic field. In: F. Vilas, C.R. Chapman and M.S. Matthews (eds), Mercury, University of Arizona Press, Tucson, AZ, pp. 429–460.

    Google Scholar 

  • Signer, P. and Suess, H.E. (1963). Rare gases in the sun, in the atmosphere, and in meteorites. In: J. Geiss and E.D. Goldberg (eds), Earth Science and Meteoritics, North-Holland Amsterdam, pp. 241–272.

    Google Scholar 

  • Suess, H.E. and Urey, H.C. (1956). Abundances of the elements. Reviews of Modern Physics, 28, 53–74.

    Article  ADS  Google Scholar 

  • Suess, H.E., Wänke, H. and Wlotzka, F. (1964). On the origin of gas-rich meteorites. Geochimica et Cosmochimica Acta, 28, 595–605.

    Article  ADS  Google Scholar 

  • Surkov, Yu.A., Barsukov, V.L., Moskaleva, L.P., Kharyukova, V.P., Zaitseva, S.Ye, Smirnov, G.G. and Manvelyan, O.S. (1989). Determination of the elemental composition of martian rocks from Phobos 2. Nature,341, 595–598.

    Article  ADS  Google Scholar 

  • Surkov, Yu. A., Kirnozov, F.F., Glazov, V.N., Dunchenko, A.G., Tatsy, L.P.and Sobornov, O.P. (1987). Uranium, thorium, and potassium in the Venusian rocks at the landing sites of Vega 1 and 2. Journal of Geophysical Research, 92, B4, E537–E540.

    Article  ADS  Google Scholar 

  • Surkov, Yu.A., Moskalyova, L.P., Kharyukova, V.P., Dudin, A.D., Smirnov,G.G. and Zaitseva, Ye. (1986). Venus rock composition at the Vega 2 landing site. Journal of Geophysical Research, 91, B13, E215–E218.

    Article  ADS  Google Scholar 

  • Taylor, L.A., Misra, K.C. and Walker, B.M. (1976). Subsolidus reequilibration, grain growth, compositional change of native FeNi metal in lunar rocks. Geochimica et Cosmochimica Acta, Supplement 7, 3461–3477.

    Google Scholar 

  • Taylor, S.R. (1982). Planetary Science: A Lunar Perspective, Lunar and Planetary Institute, Houston, TX.

    Google Scholar 

  • Turkevich, A.L., Franzgrote, E.J. and Patterson, J.H. (1970). Chemical composition of the lunar surface in a region near the Crater Tycho.Science, 168, 825–828.

    Article  ADS  Google Scholar 

  • Urey, H.C. (1959). Primary and secondary objects. Journal of Geophysical Research, 64, 1721–1737.

    Article  ADS  Google Scholar 

  • Urey, H.C. (1968). The origin of some meteorites from the Moon.Naturwissenschaften, 55, 49–57.

    Article  ADS  Google Scholar 

  • Vilas, F. (1985). Mercury: Absence of crystalline Fe2+ in the regolith.Icarus, 64, 133–138.

    Article  ADS  Google Scholar 

  • Wakita, H., Schmitt, R.A. and Rey, P. (1970). Elemental abundances of major, minor and trace elements in Apollo 11 lunar rocks, soil and core samples. Geochimica et Cosmochimica Acta, Supplement 1,1695–1717.

    ADS  Google Scholar 

  • Wänke, H. (1963). Cosmic ray data derived from isotope studies in meteorites. Proceedings of the International Conference on Cosmic Rays, Jaipur, India,2-14 Dec., Vol. 3, pp. 473–479.

    Google Scholar 

  • Wänke, H. (1965). Der Sonnenwind als Quelle der Uredelgase in Steinmeteoriten. Zeitschrift für Naturforschung, 20a, 946–949.

    ADS  Google Scholar 

  • Wänke, H. (1966). Der Mond als Mutterkörper der Bronzit-Chondrite.Zeitschrift für Naturforschung, 21a, 93–110.

    ADS  Google Scholar 

  • Wänke, H. (1981). Constitution of terrestrial planets. Philosophical Transactions of the Royal Society, A303, 287–302.

    ADS  Google Scholar 

  • Wänke, H., Baddenhausen, H., Blum, K., Cendales, M., Dreibus, G.,Hofmeister, H., Kruse, H., Jagoutz, E., Palme, C., Spettel, B., Thacker, R.and Vilcsek, E. (1977). On the chemistry of lunar samples and achondrites. Primary matter in the lunar highlands: A re-evaluation. Geochimica et Cosmochimica Acta, Supplement 8, 2191–2213.

    Google Scholar 

  • Wänke, H., Baddenhausen, H., Dreibus, G., Jagoutz, E., Kruse, H., Palme,H., Spettel, B. and Teschke, F. (1973). Multielement analyses of Apollo 15, 16 and 17 samples and the bulk composition of the Moon. Geochimica et Cosmochimica Acta, Supplement 4, 1461–1481.

    ADS  Google Scholar 

  • Wänke, H. and Dreibus, G. (1982). Chemical and isotopic evidence for the early history of the Earth-Moon system. In: P. Brosche and J. Sündermann (eds), Tidal Friction and the Earth’s Rotation II,Springer Verlag, Berlin, pp. 322–344.

    Chapter  Google Scholar 

  • Wänke, H. and Dreibus, G. (1986). Geochemical evidence for the formation of the Moon by impact-induced fission of the proto-Earth. In:W.K. Hartmann, R.J. Phillips and G.J. Taylor (eds), Origin of the Moon,Lunar Planetary Institute, Houston, TX, pp. 649–672.

    Google Scholar 

  • Wänke, H. and Dreibus, G. (1994). Chemistry and accretion history of Mars. Philosophical Transactions of the Royal Society, A349, 295–293.

    Google Scholar 

  • Wänke, H., Dreibus, G. and Palme, H. (1978). Primary matter in the lunar highlands: The case of the siderophile elements. Geochimica et Cosmochimica Acta, Supplement 10, 83–110.

    Google Scholar 

  • Wänke, H., Palme, H., Baddenhausen, H., Dreibus, G., Jagoutz, E., Kruse, H., Palme, C., Spettel, B., Teschke, F. and Thacker, R. (1975). New data on the chemistry of lunar samples: Primary matter in the lunar highlands and the bulk composition of the Moon. Geochimica et Cosmochimica Acta, Supplement 6, 1313–1340.

    Google Scholar 

  • Wänke, H., Palme, H., Baddenhausen, H., Dreibus, G., Jagoutz, E., Kruse, H., Spettel, B., Teschke, F. and Thacker, R. (1974). Chemistry of Apollo 16 and 17 samples: Bulk composition, late stage accumulation and early differentiation of the Moon. Geochimica et Cosmochimica Acta, Supplement 5, 1307–1335.

    Google Scholar 

  • Wänke, H., Palme, H., Kruse, H., Baddenhausen, H., Cendales, M., Dreibus, G., Hofmeister, H., Jagoutz, E., Palme, C., Spettel, B. and Thacker, R. (1976). Chemistry of lunar highland rocks: A refined evaluation of the composition of the primary matter. Geochimica et Cosmochimica Acta, Supplement 7, 3479–3499.

    Google Scholar 

  • Wänke, H., Rieder, R., Baddenhausen, H., Spettel, B., Teschke, F., Quijano-Rico, M. and Balacescu, A. (1970). Major and trace elements in lunar material. Geochimica et Cosmochimica Acta, Supplement 1,1719–1727.

    Google Scholar 

  • Wänke, H., Wlotzka, F., Baddenhausen, H., Balacescu, A., Spettel, B., Teschke, F., Jagoutz, E., Kruse, H., Quijano-Rico, M. and Rieder, R. (1971). Apollo 12 samples: Chemical composition and its relation to sample locations and exposure ages, the two component origin of the various soil samples and studies on lunar metallic particles. Geochimica et Cosmochimica Acta, Supplement 2, 1187–1208.

    Google Scholar 

  • Warren, P.H. (1985). The magma ocean. Concept and lunar evolution. Annual Review of Earth and Planetary Sciences, 13, 201–240.

    Article  ADS  Google Scholar 

  • Warren, P.H. and Wasson, J.T. (1978). Compositional-petrographic investigations of pristine nonmare rocks. Geochimica et Cosmochimica Acta, Supplement 10, 185–217.

    Google Scholar 

  • Warren, P.H. and Wasson, J.T. (1979). The origin of KREEP. Reviews of Geophysics and Space Physics, 17, 73–88.

    Article  ADS  Google Scholar 

  • Wasson, J.T. and Wetherill, G.W. (1979). Dynamical, chemical and isotopic evidence regarding the formation location of asteroids and meteorites. In: T. Gehrels (ed), Asteroids, University of Arizona Press, Tucson, AZ, pp. 926–974.

    Google Scholar 

  • Wetherill, G.W. (1976). The role of large bodies in the formation of the Earth and Moon. Geochimica et Cosmochimica Acta, Supplement 7, 3245–3257.

    Google Scholar 

  • Willis, J.P., Ahrens, L.H., Danchin, R.V., Erlank, A.J., Gurney, J.J., Hofmeyr, P.K., McCarthy, T.S. and Orren, M.J. (1971). Some inter-element relationships between lunar rocks and fines, and stony meteorites. Proceedings of the 2nd Lunar Science Conference, MIT Press, Vol. 2, pp. 1123–1138.

    ADS  Google Scholar 

  • Wood, J.A., Dickey, J.S., Jr., Marvin, U.B. and Powell, B.N. (1970). Lunar anorthosites and a geophysical model for the Moon. Geochimica et Cosmochimica. Acta, Supplement 1, 965–988.

    ADS  Google Scholar 

  • Zähringer, J. (1966). Primordial helium detection by microprobe technique. Earth and Planetary Science Letters, 1, 20–22.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Wänke, H. (2001). Chemical evolution of the Moon and the terrestrial planets. In: Bleeker, J.A.M., Geiss, J., Huber, M.C.E. (eds) The Century of Space Science. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0320-9_56

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0320-9_56

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7196-0

  • Online ISBN: 978-94-010-0320-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics