Skip to main content

Abstract

The extraordinary complexity of the pyruvate dehydrogenase complex (PDHC) is clearly documented in Chapter 12. PDHC contains three catalytic and two regulatory enzymes. It is subject to an intricate array of controls, including phosphorylation and dephosphorylation of the α-subunit of its thiamin-dependent component, end-product inhibition by NADH and acetyl-coenzyme A, and the action of a number of effectors. Furthermore, there is relatively little excess of this enzyme compared to the normal flux of its substrate, both in brain1 and in other tissues2. The control of PDHC in health and disease is a subject of intense research in a number of laboratories at the present time, particularly in relation to diabetes and the mechanism of action of insulin. Even subtle changes in the structure of one of the proteins in PDHC could lead to metabolically significant impairment of its activity. Conversely, one can conceive of a wide variety of metabolic alterations which could lead to secondary impairment of the activity of PDHC and present clinically as deficiencies of PDHC. In view of this complexity, it is not surprising that the deficiencies of PDHC which have been described have not yet been fully characterized in biochemical detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. F. Reynolds and J. P. Blass, (1976). A possible mechanism for selective cerebellar damage in partial PDH deficiency. Neurology, 26, 625

    PubMed  CAS  Google Scholar 

  2. O. H. Wieland, E. A. Siess, L. Weiss, G. Loffler, C. Patzelt, R. Portenhauser, U. Hartmann and A. Shirmann, (1973). Regulation of the mammalian pyruvate dehydrogenase complex by covalent modification. Symp. Soc. Exp. Biol, 27, 371

    PubMed  CAS  Google Scholar 

  3. T. L. Sourkes, (1962). Biochemistry of Mental Disease, pp. 151–155. (Hober-Harper New York)

    Google Scholar 

  4. B. K. Siesjo H. Johnannsson B. Ljunggren and K. Norberg (1974). Brain dysfunction in cerebral hypoxia and ischemia. In F. Plum (ed.). Brain Dysfunction in Metabolic Disorders pp. 75–112. Raven Press New York

    Google Scholar 

  5. R. A. Peters 1969. Biochemical lesion and its historical development. Br. Med. Bull 25 22

    Google Scholar 

  6. J. H. Quastel, (1974). Fifty years of biochemistry. A personal account. Can. J. Biochem., 52, 71

    Google Scholar 

  7. D. H. Henneman, M. D. Altschule and R. M. Goncz, (1954). Carbohydrate metabolism in brain disease. II. Glucose metabolism in schizophrenic manic depressive and involutional psychoses. Arch. Intern. Med., 54, 402

    Google Scholar 

  8. R. E. Kendell (1975). The Role of Diagnosis in Psychiatry p. 176. (Blackwell Scientific Publications Londo

    Google Scholar 

  9. R. J. Erickson, (1965). Familial infantile lactic acidosis. J. Pediatr., 66, 1005

    Google Scholar 

  10. S. Israels, J. C. Haworth, B. Courley and J. D. Ford, (1964). Chronic acidosis due to an error in lactate and pyruvate metabolism. Pediatrics, 34, 346

    PubMed  CAS  Google Scholar 

  11. B. E. Clayton, R. H. Dobbs and A. D. Patrick, (1967). Leigh’s subacute necrotizing encephalopathy: clinical and biochemical study; therapy with lipoate. Arch. Dis. Child., 42, 467

    Article  PubMed  CAS  Google Scholar 

  12. A. F. Hartman, H. J. Wohltmann, M. C. Puckerson and M. E. Wesley, (1962). Lactate metabolism-studies of a child with a serious congenital deviation. J. Pediatr., 61, 165

    Article  Google Scholar 

  13. J. C. Haworth, J. D. Ford and M. K. Younoszai, (1967). Familial chronic acidosis due to an error in lactate and pyruvate metabolism. Can. Med. Assoc. J., 97, 773

    PubMed  CAS  Google Scholar 

  14. H. L. Greene, W. K. Schubert and G. Hug, (1970). Chronic lactic acidosis of infancy. J. Pediatr., 76, 853

    Article  PubMed  CAS  Google Scholar 

  15. R. D. Eastham and J. Jancar, (1968). Clinical Pathology in Mental Retardation, pp. 159–161. (John Wright & Sons Bristol)

    Google Scholar 

  16. D. Lonsdale, W. R. Faulkner, J. W. Price and R. R. Smeby, (1969). Intermittent cerebellar ataxia associated with hyperpyruvic acidemia and hyperalaninuria. Pediatrics, 43, 1025

    PubMed  CAS  Google Scholar 

  17. J. P. Blass, J. Avigan and B. W. Uhlendorf, (1970). A defect in pyruvate decarboxylase in a child with an intermittent movement disorder. J. Clin. Invest., 49, 423

    Article  PubMed  CAS  Google Scholar 

  18. J. P. Blass, D. Lonsdale, B. W. Uhlendorf and E. Horn, (1971). Intermittent ataxia with pyruvate decarboxylase deficiency. Lancet, 1, 1302

    Article  PubMed  CAS  Google Scholar 

  19. J. P. Blass, J. D. Schulman, D. S. Young and E. Horn, (1972). An inherited defect affecting the tricarboxylic acid cycle in a patient with congenital lactic acidosis. J. Clin. Invest., 51, 1845

    Article  PubMed  CAS  Google Scholar 

  20. S. D. Cederbaum, J. P. Blass and N. Minkoff, et al. (1976). Sensitivity to carbohydrate in a patient with familial intermittent lactic acidosis and pyruvate dehydrogenase deficiency. Pediat. Res., 10,713

    PubMed  CAS  Google Scholar 

  21. R. E. Falk, S. D. Cederbaum, J. P. Blass, R. J. Pruss and R. E. Carrell, (1976). Ketonic diet in the management of pyruvate dehydrogenase deficiency. Pediatrics, 58, 713

    PubMed  CAS  Google Scholar 

  22. J. C. Haworth, T. L. Perry, J. P. Blass, S. Hansen and N. Urquhart, (1976). Lactic acidosis in three sibs due to defects in both pyruvate dehydrogenase and α-ketoglutarate dehydrogenase complexes. Pediatrics, 58, 564

    PubMed  CAS  Google Scholar 

  23. H. Wick, K. Schweizer and R. Baumgartner, (1977). Thiamine dependency in a patient with congenital lacticacidemia due to pyruvate dehydrogenase deficiency. Agents Actions, 7, 405

    Article  PubMed  CAS  Google Scholar 

  24. J. H. Strome O. Borud and P. J. Moe 1976. Fatal lactic acidosis in a newborn attributable to a congenital defect of pyruvate dehydrogenase. Pediatr. Res. 10 6

    Google Scholar 

  25. D. F. Farrell, A. F. Clark, C. R. Scott and R. P. Wennberg, (1975). Absence of pyruvate decarboxylase activity in man: a cause of congenital lactic acidosis. Science, 187, 1082

    Article  PubMed  CAS  Google Scholar 

  26. D. F. Farrell, (1977). Pyruvate dehydrogenase (E1) deficiency associated with congenital lactic acidosis. In P. Mittler (ed.). Research to Practice in Mental Retardation: Biomedical Aspects, Vol. 3, pp. 147–155. (IASSMD New York)

    Google Scholar 

  27. B. H. Robinson, J. Taylor and W. G. Sherwood, (1977). Deficiency of dihydrolipoyl dehydrogenase (a component of the pyruvate and α-ketoglutarate dehydrogenase complexes): a cause of congenital chronic lactic acidosis in infancy. Pediatr. Res., 11, 1198

    PubMed  CAS  Google Scholar 

  28. T. W. Farmer, L. Veath, A. L. Miller, J. S. O’Brien and R. M. Rosenberg, (1973). Pyruvate decarboxylase deficiency in a patient with subacute necrotizing encephalomyelopathy. Neurology, 23, 429

    Google Scholar 

  29. J. Fernandes and W. Blom 1976. Urinary lactate excretion in rmal children and in children with enzyme defects of carbohydrate metabolism. Clin. Chim. Acta. 66 34

    Google Scholar 

  30. R. A. P. Kark and M. Rodriguez-Budelli, (1977). The spectrum of ataxia syndromes due to lipoamide dehydrogenase deficiency. Neurology, 27, 359

    Google Scholar 

  31. Y. Kuroda, L. Sweetman, W. L. Nyhan, J. J. Kling and T. D. Groshong, (1978). Abnormal pyruvate and a-ketoglutarate dehydrogenases in a patient with lactic acidemia. Clin. Res., 26, 176

    Google Scholar 

  32. Y. Oka, I. Matsuda, S. Arashima, M. Anakura, T. Mitsuyama and I. Nagamatsu, (1976). Citrate treatment in a patient with pyruvate decarboxylase deficiency. Tohoku J. Exp. Med., 118, 131

    Article  PubMed  CAS  Google Scholar 

  33. Y. Oka, I. Matsuda, S. Arashima, M. Anakura, T. Mitsuyama and H. Nambu, (1975). Transient hyperalaninuria and hyperpyruvic acidemia. Neuropaediatrie, 6, 202

    Article  Google Scholar 

  34. B. H. Robinson and W. G. Sherwood, (1975). Pyruvate dehydrogenase phosphatase deficiency. Cause of congenital chronic lactic acidosis in infancy. Pediatr. Res., 9, 935

    PubMed  CAS  Google Scholar 

  35. M. Rodriguez-Budelli and R. A. P. Kark, (1977). Analysis of a defect in lipoamide dehydrogenase in Friedreich’s Ataxia. Trans. Am. Soc. Neurochem., 8, 116

    Google Scholar 

  36. J. L. Willems, L. A. H. Monnens, J. M. F. Trijbels, R. A. C. Sengers and J. H. Veerkamp, (1974). Pyruvate decarboxylase deficiency in liver. N. Engl. J. Med., 290, 406

    PubMed  CAS  Google Scholar 

  37. J. P. Blass, R. A. P. Kark, N. Menon and S. H. Harris, (1976). Decreased activities of the pyruvate and ketoglutarate dehydrogenase complexes in fibroblasts from five patients with Friedreich’s ataxia. N. Engl. J. Med., 295, 62

    Article  PubMed  CAS  Google Scholar 

  38. J. P. Blass, S. D. Cederbaum and H. G. Dunn, (1976). Biochemical defect in Leigh’s disease. Lancet, 1, 1237

    Article  PubMed  CAS  Google Scholar 

  39. R. A. P. Kark and M. Rodriguez-Budelli, (1979). Pyruvate dehydrogenase deficiencies in six of fourteen unselected patients with spinocerebellar degenerations. Neurology, 29,126

    PubMed  CAS  Google Scholar 

  40. J. P. Blass, S. D. Cederbaum and R. A. P. Kark, (1976). Pyruvate dehydrogenase deficiency: summary of results with 25 patients. Trans. Am. Soc. Neurochem., 7, 167

    Google Scholar 

  41. J. P. Blass, S. D. Cederbaum and R. A. P. Kark, (1978). Pyruvate dehydrogenase deficiency. In O. Sperling, A. de Vries (eds.) Monographs in Human Genetics. Vol. 9, 12–15. (S. Karger Basel)

    Google Scholar 

  42. D. Stansbie and R. M. Denton, (Personal communication)

    Google Scholar 

  43. F. A. Hommes, (Personal communication)

    Google Scholar 

  44. A. Yoshida, (1973). Hemolytic anemia and G6PD deficiency. Science, 179, 532

    Article  PubMed  CAS  Google Scholar 

  45. A. Filla, R. F. Butterworth, G. Geoffrey, B. Lemieux and A. Barbeau, (1978). Serum and platelet lipoamide dehydrogenase in Friedreich’s ataxia. Can. J. Neurol. Sci., 5,111

    PubMed  CAS  Google Scholar 

  46. J. P. Blass, S. D. Cederbaum and G. E. Gibson, (1976). Clinical and metabolic abnormalities accompanying deficient oxidation of pyruvate. In F. A. Hommes and C. J. Van Den Berg (eds.). Normal and Pathological Development of Energy Metabolism, p. 193. (Academic Press New York)

    Google Scholar 

  47. A. A. Moncrieff, O. P. Koumides, B. E. Clayton, A. D. Patrick, A. G. G. Renwick and G. E. Roberts, (1964). Lead poisoning in children. Arch. Dis. Child., 39, 1

    Article  PubMed  CAS  Google Scholar 

  48. B. H. Robinson, D. G. Gall and E. Cutz, (1977). Deficient activity of hepatic pyruvate dehydrogenase and pyruvate carboxylase in Reye’s syndrome. Pediatr. Res., 11, 279

    PubMed  CAS  Google Scholar 

  49. R. A. P. Kark, J. P. Blass and W. K. Engel, (1974). Pyruvate oxidation in neuromuscular disease: evidence of a genetic defect in two families with the clinical syndrome of Friedreich’s ataxia. Neurology, 24, 964

    PubMed  CAS  Google Scholar 

  50. A. P. Halestrap, (1975). Mitochondrial pyruvate carrier. Kinetics and specificity for substrates and inhibitors. Biochem. J., 148, 85

    PubMed  CAS  Google Scholar 

  51. J. M. Land, J. Mowbray and J. B. Clark, (1976). Control of pyruvate and f$-hydroxybutyrate utilisation in rat brain mitochondria and its relevance to phenylketonuria and maple-syrup-urine disease. J. Neurochem., 26, 823

    Article  PubMed  CAS  Google Scholar 

  52. J. P. Blass, R. A. P. Kark and W. K. Engel, (1971). Clinical studies of a patient with pyruvate-decarboxylase deficiency. Arch. Neurol., 25, 449

    PubMed  CAS  Google Scholar 

  53. L. Sokoloff, (1973). Metabolism of ketone bodies by the brain. Annu. Rev. Med., 24, 271

    Article  PubMed  CAS  Google Scholar 

  54. N. Friedreich, (1863). Ueber degenerative atrophie der spinalen hinterstrange. Virchows Arch. (Pathol. Anat.), 26, 391

    Article  Google Scholar 

  55. F. Anderman, (1976). Nicolaus Friedreich and degenerative atrophy of the posterior columns of the spinal cord. Can. J. Neurol. Sci., 3,275

    Google Scholar 

  56. J. G. Greenfield, (1954). The Spinocerebellar Degenerations. (Charles C. Thomas Springfield Illinois)

    Google Scholar 

  57. T. Sjogren, (1943). Klinische und erbbiologische untersuchungen uber die heredoataxien. Acta. Psychiatr. Neurol., 27, 1

    Google Scholar 

  58. R. D. Adams and M. Victor, (1977). Principles of Neurology, p. 836. (McGraw-Hill New York)

    Google Scholar 

  59. W. R. Brain and J. N. Walton, (1969). Diseases of the Nervous System, p. 589. (Oxford University Press Oxford)

    Google Scholar 

  60. R. A. P. Kark, R. Rosenberg and L. Schut, (1978). The Ataxias. Advances in Neurology, p. 21. (Raven Press New York)

    Google Scholar 

  61. C. R. Scott and D. F. Farrell, (Personal communication)

    Google Scholar 

  62. D. A. Stumpf and J. D. Parks, (1978). Friedreich’s ataxia. I. Normal pyruvate dehydrogenase complex activity in platelets. Ann. Neurol., 4,366

    Article  PubMed  CAS  Google Scholar 

  63. A. Barbeau, R. F. Butterworth, T. Ngo, G. Breton, S. Melancon, D. Shapcott, G. Geoffroy and B. Lemieux, (1976). Pyruvate metabolism in Friedreich’s ataxia. Can. J. Neurol. Sci.,,379

    Google Scholar 

  64. A. Barbeau, (1978). Friedreich’s ataxia 1978 — an overview. Can. J. Neurol. Sci., 5, 161

    PubMed  CAS  Google Scholar 

  65. H. G. Dunn and C. L. Dolman, (1969). Necrotizing encephalomyelopathy: report of a case with relapsing polyneuropathy and hyperalaninemia and withmanifestations resembling Friedreich’s ataxia. Neurology, 19, 536

    PubMed  CAS  Google Scholar 

  66. R. Exss, F. Gulotta, H. C. Kallfelz and M. Volpel, (1974). Wernicke’s encephalopathy and Friedreich’s ataxia. Neuropaediatrie, 5, 162

    Article  CAS  Google Scholar 

  67. M. A. Guggenheim and D. A. Stumpf, (1977). Familial metabolic disease with clinicopathological findings of both Leigh’s Disease and adult-type spinocerebellar degeneration. Ann. Neurol., 2, 264

    Google Scholar 

  68. DeVivo, D. (Personal communication)

    Google Scholar 

  69. R. A. P. Kark, J. P. Blass and A. Spence, (1975). Physostigmine in patients with familial ataxias. Neurology, 27, 70

    Google Scholar 

  70. M. M. Rodriguez-Budelli, R. A. P. Kark, J. P. Blass, M. A. Spence, (1978). Action of physostigmine on inherited ataxias. Adv. Neurol., 21, 195

    PubMed  CAS  Google Scholar 

  71. A. Barbeau, (1978). Emerging treatments: replacement therapy with choline or lecithin in neurological diseases. Can. J. Neurol. Sci., 5, 157

    PubMed  CAS  Google Scholar 

  72. A. Barbeau, (1978). Phosphatidylcholine (Lecithin) in neurologic disorders. Proc. Am. Acad. Neurol., 30, 81

    Google Scholar 

  73. S. Whitehouse, R. H. Cooper and P. J. Randle, (1974). Mechanism of activation of pyruvate dehydrogenase by dichloroacetate and other halogenated carboxylic acids. Biochem. J., 141, 761

    PubMed  CAS  Google Scholar 

  74. P. W. Stacpoole, G. W. Moore and C. M. Kornhauser, (1978). Metabolic effects of dichloroacetate in patients with diabetes mellitus and hyperlipoproteinemia. N. Engl. J. Med., 298, 526

    Article  PubMed  CAS  Google Scholar 

  75. Saudubray, J. M. (Personal communication)

    Google Scholar 

  76. McKhan, G. (Personal communication)

    Google Scholar 

  77. O. B. Evans, A. W. Kilroy and G. M. Fenichel, (1978). Acetazolamide in the treatment of pyruvate dysmetabolism syndromes. Arch. Neurol, 35, 302

    PubMed  CAS  Google Scholar 

  78. J. R. DiPalma and D. M. Ritchie, (1977). Vitamin toxicity. Annu. Rev. Phar macol. Toxicol, 17, 133

    Article  CAS  Google Scholar 

  79. G. G. Nahas, (1959). Use of an organic carbon dioxide buffer in vivo. Science, 26, 782

    Article  Google Scholar 

  80. J. P. Blass and C. A. Lewis, (1973). Kinetic properties of the partially purified pyruvate dehydrogenase complex of ox brain. Biochem. J., 130, 31

    Google Scholar 

  81. J. R. Butler, F. H. Pettit, P. F. Davis and L. J. Reed, (1977). Binding of thiamin thiazolone pyrophosphate to mammalian pyruvate dehydrogenase and its effect on kinase and phosphatase activities. Biochem. Biophys. Res. Commun., 74, 1667

    Article  PubMed  CAS  Google Scholar 

  82. J. H. Pincus, G. B. Solitare and J. R. Cooper, (1976). Thiamine triphosphate levels and histopathology. Correlation in Leigh’s disease. Arch. Neurol, 33, 759

    PubMed  CAS  Google Scholar 

  83. L. E. Rosenberg, (1974). Vitamin-responsive inherited diseases affecting the nervous system. In F. Plum (ed.). Brain Dysfunction in Metabolic Disorders, p. 271. (Raven Press New York)

    Google Scholar 

  84. W. M. Taylor and M. L. Halperin, (1973). Regulation of pyruvate dehydrogenase in muscle. Inhibition by citrate. J. Biol. Chem., 248, 6080

    PubMed  CAS  Google Scholar 

  85. Holtzman, D. (Personal communication)

    Google Scholar 

  86. Y. Shapira, S. D. Cederbaum, P. A. Cancilla, D. Nielsen and B. M. Lippe, Familial poliodystrophy, mitochondrial myopathy, and lactate acidemia. Neurology, 25, 614

    Google Scholar 

  87. G. E. Gibson R. Jope and J. P. Blass 1975. Reduced synthesis of acetylcholine accompanying impaired oxidation of pyruvic acid in rat brainminces. Biochem. J. 148 1

    PubMed  CAS  Google Scholar 

  88. J. P. Blass and G. E. Gibson, (1977). Cholinergic systems and disorders of carbohydrate catabolism. In D. Jenden (ed.). Cholinergic Mechanisms and Psychopharmacology, pp. 791–803. (Plenum Press New York)

    Google Scholar 

  89. R. J. Wurtman, M. J. Hirsch and J. H. Growdon, (1977). Lecithin consumption raises serum-free-choline levels. Lancet, 2, 68

    Article  PubMed  CAS  Google Scholar 

  90. Evans, O. B. (Personal communication)

    Google Scholar 

  91. F. Manfredi, H. O. Sicker, A. P. Spoto and H. A. Saltzman, (1960). Severe carbon dioxide intoxication. Treatment with organic buffer (Trishydroxy-methylaminomethane). J. Am. Med. Assoc., 173, 999

    CAS  Google Scholar 

  92. G. E. Gibson, M. Shimada, and J. P. Blass, (1979). Protection by THAM against behavioral and neurochemical effects of hypoxia. Biochem. Pharm., 28, 747

    Article  PubMed  CAS  Google Scholar 

  93. J. P. Blass S. D. Cederbaum and R. A. P. Kark 1976. Rapid diagsis of pyruvate and ketoglutarate dehydrogenase deficiencies in platelet enriched preparations from blood. Clin. Chim. Acta. 75 2

    Article  Google Scholar 

  94. E. Silverstein and P. D. Boyer, (1964). Instability of pyruvate-C14 in aqueous solutions as detected by enzymic assay. Anal. Biochem., 8, 470

    Article  PubMed  CAS  Google Scholar 

  95. A. F. Clark, D. F. Farrell, W. Burke and C. R. Scott, (1976). The effect of mycoplasma contamination on the in vitro assay of pyruvate dehydrogenase activity in cultured fibroblasts. Clin. Res., 24, 147

    Google Scholar 

  96. T. R. Chen, (1977). In situ detection of mycoplasma contamination in cell culture by fluorescent Hoechst 33258 stain. Exp. Cell. Res., 104, 255

    Article  PubMed  CAS  Google Scholar 

  97. E. L. Schneider, E. J. Stanbridge and C. J. Epstein, (1974). Incorporation of 3H-Uridine and 14C-Uracil into RNA. A simple technique for the detection of mycoplasma contamination of cultured cells. Exp. Cell. Res., 84, 311

    Article  PubMed  CAS  Google Scholar 

  98. P. A. Mardh, (1975). Elimination of mycoplasmas from cell cultures with sodium polyanethol sulphonate. Nature, 254, 515

    Article  PubMed  CAS  Google Scholar 

  99. Gibson, G. E. and Vasil, A. (Personal communication)

    Google Scholar 

  100. D. Stansbie, (1976). Regulation of the human pyruvate dehydrogenase complex. Clin. Sci. Mol.Med., 51, 445

    PubMed  CAS  Google Scholar 

  101. W. G. Johnson and A. M. Chutorian, (1977). Inheritance of a new form of hexosaminidase deficiency. Ann. Neurol, 2, 266

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 The Society for the Study of Inborn Errors of Metabolism

About this chapter

Cite this chapter

Blass, J.P. (1980). Pyruvate dehydrogenase deficiencies. In: Burman, D., Holton, J.B., Pennock, C.A. (eds) Inherited Disorders of Carbohydrate Metabolism. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-9215-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-9215-3_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-9217-7

  • Online ISBN: 978-94-009-9215-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics