Skip to main content

The Viscosity of Particulate Systems

  • Chapter
Low Reynolds number hydrodynamics

Part of the book series: Mechanics of fluids and transport processes ((MFTP,volume 1))

Abstract

Our emphasis thus far has been primarily directed toward uniform, that is, translational, fluid-particle motions. In this chapter we shall examine phenomena arising from shearing motion of the fluid relative to the suspended solids. We adopt the point of view that, in a sense, a fluid-particle suspension may be regarded as a continuum. This attitude seems reasonable provided that the particle dimensions are very small compared with the dimensions of the apparatus containing the suspension. Thus, among other things, we shall seek to determine the apparent viscosity of such a suspension. Problems of suspension viscosity are important not only for the macroscopic particles involved in many industrial separation and reaction processes, but also in connection with the very small particles commonly described as colloidal, whose size approaches the molecular dimensions of the suspending fluid medium. The same basic variables characterize suspension viscosity as characterize sedimentation rates, namely: (a) the nature of the fluid; (b) the nature of the suspended particles; (c) the concentration of suspended particles; (d) the motion of particles and fluid-the shearing field of the latter being the prime distinguishing characteristic. Because of the small size of particles involved in viscosity problems, other properties, such as internal flexibility and ease of deformation, may also be important.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Arrhenius, S., Z. Physik. Chem. 1 (1887), 285.

    Google Scholar 

  2. Bartok, W., and S. G. Mason, J. Colloid. Sci. 13 (1958), 293.

    Article  Google Scholar 

  3. Brenner, H., Phys. Fluids 1 (1958), 338.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Brodnyan, J. G., Trans. Soc. Rheology 3 (1959), 61.

    Article  ADS  Google Scholar 

  5. Burgers, J. M., chap. 3 in Second Report on Viscosity and Plasticity. Amsterdam: North Holland, 1938.

    Google Scholar 

  6. Cheng, P. Y., and H. K. Schachman, J. Polymer Sci. 16 (1955), 19.

    Article  ADS  Google Scholar 

  7. Coulter, N. A., and J. R. Pappenheimer, Amer. J. Physiol. 159 (1949), 401.

    Google Scholar 

  8. Debye, P., and A. M. Bueche, J. Chem. Phys. 16 (1948), 573.

    Article  ADS  Google Scholar 

  9. Einstein, A., Ann. Physik 19 (1906), 289

    Article  ADS  Google Scholar 

  10. Einstein, A., Ann. Physik 34 (1911), 591; for English translations see Einstein, A., The Theory of Brownian Movement. New York: Dover, 1956.

    Article  ADS  Google Scholar 

  11. Eisenschitz, R., Z. Physik. Chem. A158 (1932), 85.

    Google Scholar 

  12. Fisher, H. L., Chemistry of Natural and Synthetic Rubbers. New York: Reinhold, 1957.

    Google Scholar 

  13. Ford, T. F., J. Phys. Chem. 64 (1960), 1168.

    Article  Google Scholar 

  14. Frisch, H. L., and R. Simha, in Rheology—Theory and Applications, Vol. I. F. R. Eirich, ed. New York: Academic Press, 1956. chap. 14.

    Google Scholar 

  15. Fulton, J. F. (ed.), A Textbook of Physiology, 17th ed. New York: Saunders, 1955; chap. 31, H. Lamport, “Hemodynamics,” and other chapters.

    Google Scholar 

  16. Guth, E., and R. Simha, Kolloid Z. 74 (1936), 266.

    Article  Google Scholar 

  17. Happel, J., J. Appl. Phys. 28 (1957), 1288.

    Article  ADS  MATH  Google Scholar 

  18. —, A. I. Ch. E. Jour. 4 (1958), 197.

    MathSciNet  Google Scholar 

  19. — and R. C. Lee, unpublished investigation (1962).

    Google Scholar 

  20. Hawksley, P. G. W., Paper 7 “Some Aspects of Fluid Flow,” Inst. Phys., London: Arnold, 1951.

    Google Scholar 

  21. Hermans, J. J. (ed.), Flow Properties of Disperse Systems. New York: Interscience Publishers, 1953.

    Google Scholar 

  22. Jeffery, G. B., Proc. Roy. Soc. (London) A102 (1922), 161.

    ADS  Google Scholar 

  23. Johnson, E., “A Theory of Fluidization,” Inst. Gas Eng. Publ. 378, London: 1951.

    Google Scholar 

  24. Jones, G., and A. K. Tilley, J. Amer. Chem. Soc. 55 (1933), 624.

    Article  Google Scholar 

  25. Kirkwood, J. G., and J. Riseman, J. Chem. Phys. 16 (1948), 565.

    Article  ADS  Google Scholar 

  26. Kuhn, W., and H. Kuhn, Helv. Chim. Acta 28 (1945), 97.

    Article  Google Scholar 

  27. —, Z. Physik. Chem. A161 (1932), 1.

    Google Scholar 

  28. Kunitz, M., J. Gener. Physiol. 9 (1926), 715.

    Article  Google Scholar 

  29. Kynch, G. J., Brit. J. Appl. Phys. 3 (1954), S5.

    Article  Google Scholar 

  30. —, Proc. Roy. Soc. (London) A237 (1956), 90.

    ADS  Google Scholar 

  31. —, Nature 184 (1959), 1311.

    Article  ADS  Google Scholar 

  32. Lamb, H., Hydrodynamics. New York: Cambridge Univ. Press, 1932; reprint, New York: Dover Publications, 1945.

    MATH  Google Scholar 

  33. Leeson and Reeve, J. Physiol. 115 (1951), 129.

    Google Scholar 

  34. Mason, S. G., and R. St. J. Manley, Proc. Roy. Soc. (London) A238 (1956), 117.

    ADS  Google Scholar 

  35. Maude, A. D., and R. L. Whitmore, Brit. J. Appl. Phys. 7 (1956), 98.

    Article  ADS  Google Scholar 

  36. Milne-Thomson, L. M. Theoretical Hydrodynamics, 3rd ed. New York: Macmillan, 1955.

    MATH  Google Scholar 

  37. Mooney, M., J. Appl. Phys. 25 (1954), 406.

    Article  ADS  Google Scholar 

  38. —, J. Colloid. Sci. 6 (1951), 162.

    Article  Google Scholar 

  39. Mori, Y., and N. Ototake, J. Chem. Eng. (Tokyo) 20 (1956), 488.

    Google Scholar 

  40. Onogi, S., I. Hamana, and H. Hirai, J. Appl. Phys. 29 (1958), 1503.

    Article  ADS  Google Scholar 

  41. Philippoff, W., Viskosität der Kolloide. Dresden and Leipzig: Theodor Steinkopff, 1942.

    Google Scholar 

  42. Robinson, J., J. Phys. Colloid. Chem. 53 (1949), 1042.

    Article  Google Scholar 

  43. Rutgers, R., Rheologica Acta 2 (1962), 202

    Article  Google Scholar 

  44. Rutgers, R., Rheologica Acta 2 (1962), 305.

    Article  Google Scholar 

  45. Saito, N., J. Phys. Soc. Japan 7 (1952), 447.

    Article  ADS  Google Scholar 

  46. —, and M. Sugita, J. Phys. Soc. Japan 7 (1952), 554.

    Article  ADS  Google Scholar 

  47. Saunders, F. L., J. Colloid Sci. 16 (1961), 13.

    Article  Google Scholar 

  48. Scheraga, H. A., J. Chem. Phys. 23 (1955), 1526.

    Article  ADS  Google Scholar 

  49. Segré, G., and A. Silberberg, J. Colloid. Sci. 18 (1963), 312.

    Article  Google Scholar 

  50. Simha, R., J. Appl. Phys. 23 (1952), 1020.

    Article  ADS  Google Scholar 

  51. —, J. Res. Nat. Bur. Stand. 42 (1949), 409.

    Google Scholar 

  52. Sweeny, K. H., and R. D. Geckler, J. Appl. Phys. 25 (1954), 1135.

    Article  ADS  Google Scholar 

  53. Swindells, J. F., C. F. Snyder, R. C. Hardy, and P. E. Golden, “Viscosities of Sucrose Solutions at Various Temperatures: Tables of Recalculated Values,” Suppl. Nat. Bur. Stand. Circular 440, 1958.

    Google Scholar 

  54. Taylor, G. I., Proc. Roy. Soc. (London) A103 (1923), 58.

    ADS  Google Scholar 

  55. —, Proc. Roy. Soc. (London) A138 (1932), 41.

    ADS  Google Scholar 

  56. Vand, V., J. Phys. Colloid. Chem. 52 (1948), 277.

    Article  Google Scholar 

  57. Ward, S. G., and R. L. Whitmore, Brit. J. Appl. Phys. 1 (1950), 286.

    Article  ADS  Google Scholar 

  58. Weissberg, S. G., R. Simha, and S. Rothman, J. Res. Nat. Bur. Stand. 47 (1951), 298.

    Google Scholar 

  59. Williams, P. S., J. Appl. Chem. 3 (1953), 120.

    Article  Google Scholar 

  60. Yang, J. T., J. Amer . Chem. Soc. 80 (1958), 1783.

    Article  Google Scholar 

  61. Zakin, J. L., private communication (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Martinus Nijhoff Publishers, The Hague

About this chapter

Cite this chapter

Happel, J., Brenner, H. (1983). The Viscosity of Particulate Systems. In: Low Reynolds number hydrodynamics. Mechanics of fluids and transport processes, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-8352-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-8352-6_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-247-2877-0

  • Online ISBN: 978-94-009-8352-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics