Skip to main content

Part of the book series: Mechanics of fluids and transport processes ((MFTP,volume 1))

Abstract

The introduction of a stream function serves to unify the method of attack on all two-dimensional incompressible fluid motions. For those situations the solution of the equations of motion is reduced to the search for a single scalar function. Unfortunately, in the general case of three-dimensional motions this unified method of approach is denied us. Specific solutions of the equations of motion must be developed for each different boundary geometry. There exist, however, a number of classes of three-dimensional flows which can still be uniquely characterized by means of a single scalar function. Each of these involves a certain mode of symmetry in the flow pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Aoi, T., J. Phys. Soc. Japan 10 (1955), 119

    Article  MathSciNet  ADS  Google Scholar 

  2. Ibid.

    Article  MathSciNet  ADS  Google Scholar 

  3. Basset, A. B., A Treatise on Hydrodynamics, Vol. 2. New York: Dover, 1961.

    Google Scholar 

  4. Bateman, H.8, Hydrodynamics, Pt. II. Nat. Res. Council Bull. No. 84, 1932.

    Google Scholar 

  5. Bond, W. N., Proc. Phys. Soc. 33 (1921), 225

    Google Scholar 

  6. Bond, W. N., Proc. Phys. Soc. 34 (1922), 139.

    Google Scholar 

  7. Boussinesq, J., Compt. Rend. Acad. Sci. (Paris) 156 (1913), 124.

    Google Scholar 

  8. Collins, W. D., Mathematika 10 (1963), 72.

    Article  MathSciNet  Google Scholar 

  9. Cunningham, E., Proc. Royal Soc. (London) A83 (1910), 357.

    Article  ADS  Google Scholar 

  10. Dryden, H. L., F. D. Murnaghan, and H. Bateman, Hydrodynamics. New York: Dover, 1956.

    MATH  Google Scholar 

  11. Epstein, P. S., Phys. Rev. 23 (1924), 710.

    Article  ADS  Google Scholar 

  12. Goldstein, S., Modern Developments in Fluid Dynamics, Vol. I. Oxford: Oxford Univ. Press, 1938.

    MATH  Google Scholar 

  13. Gupta, S. C., ZAMP 8 (1957), 257.

    Article  ADS  MATH  Google Scholar 

  14. Haberman, W. L., and R. M. Sayre, David W. Taylor Model Basin Report no. 1143, Washington, D. C, 1958.

    Google Scholar 

  15. Hadamard, J. S., Compt. Rend. Acad. Sci. (Paris) 152 (1911), 1735

    MATH  Google Scholar 

  16. Hadamard, J. S., Compt. Rend. Acad. Sci. (Paris) 154 (1912), 109.

    MATH  Google Scholar 

  17. Hamel, G., Jahresber. Dt. Math. Ver. 25 (1917), 34; also NACA, Tech. Memo No. 1342.

    Google Scholar 

  18. Happel, J., A. I. Ch. E. Jour. 4 (1958), 197.

    MathSciNet  Google Scholar 

  19. Jeffery, G. B., Proc. Lond. Math. Soc. 14 (1915), 327.

    Google Scholar 

  20. Johansen, F. C., Proc. Roy. Soc. A126 (1930), 231.

    ADS  Google Scholar 

  21. Kneale, S. G., Ph. D. Thesis, Harvard Univ., Cambridge, Mass., 1953.

    Google Scholar 

  22. Lamb, H., Hydrodynamics, 6th ed. Cambridge: Cambridge Univ. Press, 1932.

    MATH  Google Scholar 

  23. Lee, H. M., M. S. Thesis, Univ. of Iowa, Iowa City, Iowa, 1947.

    Google Scholar 

  24. Levich, V. G., Physicochemical Hydrodynamics. Englewood Cliffs, N. J.: Prentice-Hall, Inc., 1962.

    Google Scholar 

  25. MacRobert, T. M., Spherical Harmonics, 2nd ed. New York: Dover, 1947.

    Google Scholar 

  26. Millsaps, K., and K. Pohlhausen, J. Aero. Sci. 20 (1953), 187.

    MathSciNet  MATH  Google Scholar 

  27. Milne-Thomson, L. M., Theoretical Hydrodynamics, 4th ed. New York: Macmillan, 1960.

    MATH  Google Scholar 

  28. Morse, P. M., and H. Feshbach, Methods of Theoretical Physics, Vol. I New York: McGraw-Hill, 1953.

    MATH  Google Scholar 

  29. Oberbeck, A., J. reine angew. Math. 81 (1876), 62.

    Article  Google Scholar 

  30. Payne, L. E., and W. H. Pell, J. Fluid Mech. 7 (1960), 529.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Ray, M., Phil. Mag. (ser. 7), 21 (1936), 546.

    Google Scholar 

  32. Rouse, H., Engineering Hydraulics. New York: Wiley, 1950, p. 35.

    Google Scholar 

  33. Roscoe, R., Phil. Mag. 40 (1949), 338.

    MathSciNet  MATH  Google Scholar 

  34. Rybczynski, W., Bull. Acad. Sci. Cracovie (ser. A) (1911), 40.

    Google Scholar 

  35. Sampson, R. A., Phil. Trans. Roy. Soc. A182 (1891), 449.

    ADS  Google Scholar 

  36. Savic, P., Rept. No. MT-22, Nat. Res. Council Canada (Ottawa), July 31, 1953.

    Google Scholar 

  37. Scriven, L. E., Chem. Eng. Sci. 12 (1960), 98.

    Article  Google Scholar 

  38. Slezkin, N. A., Dynamics of Viscous Incompressible Fluids, (in Russian). Moscow: Gos. Izdat. Tikhi-Teor. Lit., 1955.

    Google Scholar 

  39. Stimson, M., and G. B. Jeffery, Proc. Roy. Soc. (London), A111 (1926), 110.

    ADS  Google Scholar 

  40. Williams, W. E., Phil. Mag. (6th ser.), 29 (1915), 526.

    Article  Google Scholar 

  41. Walton, T. S., “Equations for the numerical determination of the steady flow of a viscous liquid past a solid of revolution,” Naval Ordnance Lab., White Oak, Silver Springs, Md. October 19, 1949.

    Google Scholar 

  42. Yih, C. S., La Houille Blanche 12, No. 3, 1957.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Martinus Nijhoff Publishers, The Hague

About this chapter

Cite this chapter

Happel, J., Brenner, H. (1983). Axisymmetrical Flow. In: Low Reynolds number hydrodynamics. Mechanics of fluids and transport processes, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-8352-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-8352-6_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-247-2877-0

  • Online ISBN: 978-94-009-8352-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics