Skip to main content

Thermal and Quantum Noise in the Inner Ear

  • Conference paper
Mechanics of Hearing

Abstract

General theories of thermal and quantum fluctuations are used to calculate the levels of noise in models of inner ear mechanics. In each case considered, the calculated levels of thermal noise are much too large to be consistent with the detection of sub-angstrom motions at the threshold of hearing. Quantum noise levels are comparable to these threshold signals, implying that the inner ear is not a classical system. Some implications of these results for theories of hearing are noted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bialek, W. and Schweitzer, A. (1983a). Thermal noise and the auditory receptor cell. In preparation.

    Google Scholar 

  • Bialek, W. and Schweitzer, A. (1983b). Quantum noise and the molecular basis of auditory detection. In preparation.

    Google Scholar 

  • Braginsky, V.B., Voronstsov, Y.I., and Thorne, K.S. (1980). Quantum non-demolition measurements. Science 209, 547–557.

    Article  Google Scholar 

  • Caves, C. M. (1982). Quantum limits on noise in linear amplifiers. Phys. Rev. D 26, 1817–1839.

    Article  Google Scholar 

  • De Boer, E. (1980). Auditory physics. Physical principles in hearing theory. I. Phys. Repts. 62, 87–174.

    Article  Google Scholar 

  • DeVault, D. C. (1980). Quantum mechanical tunneling in biological systems. Quart. Rev. Biophys. 13, 387–564.

    Article  Google Scholar 

  • De Vries, Hl. (1956). Physical aspects of the sense organs. Prog. Biophys. Biophys. Chem. 6, 207–264.

    Google Scholar 

  • Flerov, M.N. (1976). Thermal noise of hair cells in the organ of Corti. Biofizika 6, 1092–1096.

    Google Scholar 

  • Flock, A. and Cheung, H.C. (1977). Actin filaments in sensory hairs of inner ear receptor cells. J. Cell. Biol. 75, 339–343.

    Article  Google Scholar 

  • Gold, T. (1948). Hearing. II. The physical basis of the action of the cochlea. Proc. Roy. Soc. Edinb. B135, 492–498.

    Article  Google Scholar 

  • Harris, G.G. (1968). Brownian motion in the cochlear partition. J. Acoust. Soc. Am. 44, 176–186.

    Article  Google Scholar 

  • Karplus, M. and McCammon, J.A. (1980). The internal dynamics of globular proteins. C.R.C. Crit. Rev. Biochem. 9, 293–349.

    Article  Google Scholar 

  • Khanna, S.M. and Leonard, D.G.B. (1982). Basilar membrane tuning in the cat cochlea. Science 215, 305–306.

    Article  Google Scholar 

  • Landau, L. and Lifshitz, E.M. (1977). Statistical Physics (Pergamon, Oxford).

    Google Scholar 

  • Landau, L. and Lifshitz, E.M. (1959). Fluid Mechanics (Pergamon, Oxford).

    Google Scholar 

  • Lewis, E.R., Leverenz, E.L., and Bialek, W.S. (1983). The vertebrate inner ear. To appear in C.R.C. Rev. Biomed. Eng..

    Google Scholar 

  • Lewis, E.R. and Narins, P.M. (1981). Seismic sensitivity in VIIIth nerve afferent fibers of the white-lipped frog. Soc. Neurosci. Abs. 7, 148.

    Google Scholar 

  • Lighthill, J. (1975). Mathematical Biofluiddynamics (SIAM, Philadelphia).

    Book  MATH  Google Scholar 

  • Lighthill, J. (1980). Energy flow in the cochlea. J. Fluid Mech. 106, 149–213.

    Article  MathSciNet  Google Scholar 

  • Peake, W.T. and Ling, A.R. Jr. (1980). Basilar membrane motion in the alligator lizard: Its relation to tonotopic organization and frequency selectivity. J. Acoust. Soc. Am. 67, 1736–1745.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Delft University Press, The Netherlands

About this paper

Cite this paper

Bialek, W. (1983). Thermal and Quantum Noise in the Inner Ear. In: de Boer, E., Viergever, M.A. (eds) Mechanics of Hearing. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6911-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6911-7_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6913-1

  • Online ISBN: 978-94-009-6911-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics