Skip to main content

Part of the book series: Forestry Sciences ((FOSC,volume 9))

Abstract

Over the last eighty years, an extensive body of data has built up, describing symbiotic nitrogen fixation in biochemical and physiological terms. This information can now be drawn on for many agricultural legumes to suggest with some confidence combinations of host plant variety and microsymbiont strain which, together with the appropriate plant management practices, will give good returns of biologically fixed nitrogen under particular growth conditions. Our knowledge of similar procedures which may enhance symbiotic nitrogen fixation in non-agricultural systems is much less complete, however. Indeed, in systems involving actinorhizal species, the basic experimental data on which rational programmes for improvement of the symbiotic association may be founded are still quite fragmentary. This chapter presents an overall view of those aspects of the biochemistry and physiology of symbiotic nitrogen fixation which are basic to the development of programmes designed to improve the symbiotic association and to the interpretation of the results obtained from such programmes. The experimental evidence discussed has been selected to indicate areas of research which should be of fundamental concern to forest physiologists interested in the profitable introduction of symbiotic nitrogen fixation into the forest environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yates MG: Biochemistry fixation. In: The Biochemistry of plants 5 Amino acids and derivatives Miflin BJ (ed), New York, Academic Press, 1980, p 1–64.

    Google Scholar 

  2. Zumft WG, Mortensen LE, Palmer G: Electron-paramagnetic-resonance studies on nitrogenase. Eur J Biochem 46: 525–535, 1974.

    Article  PubMed  CAS  Google Scholar 

  3. Burris RH, Orme-Johnson WH: Mechanism of nitrogen fixation. In: 1st International symposium of nitrogen fixation Newton W, Nyman CJ (eds), Pullman, Washington State University Press, 1976, p 208–233.

    Google Scholar 

  4. Smith BE, Eady RR, Thorneley RNF, Yates MG, Postgate JR: Some aspects of the mechanism of nitrogenase. In: Recent developments of nitrogen fixation Newton W, Postgate JR, Rodriguez-Barrueco C (eds), New York, Academic Press, 1977, p 191–204.

    Google Scholar 

  5. Burris RH: Fixation by free-living microorganisms: Enzymology. In: The chemistry and biochemistry of nitrogen fixation Postgate JR (ed), London, Plenum Press, 1971, p 106–160.

    Google Scholar 

  6. Bisseling T, Van Staveren W, Van Kammen A: The effect of waterlogging on the synthesis of the nitrogenase components in bacteroids of Rhizobium leguminosarum in root nodules of Pisum sativum. Biochem Biophys Res Comm 93: 687–693, 1980.

    Article  PubMed  CAS  Google Scholar 

  7. Walker CC, Partridge CDP, Yates MG: The effect of nutrient limitation on hydrogen production by nitrogenase in continuous cultures of Azotobacter chroococcum. J gen Microbiol 124: 317–327, 1981.

    CAS  Google Scholar 

  8. Dixon ROD: Relationships between nitrogenase systems and ATP-yielding processes. In: Nitrogen fixation by free-living micro-organisms Stewart WDP (ed), Cambridge, Cambridge University Press, 1975, p 421–436.

    Google Scholar 

  9. Scherings G, Haaker H, Veeger C: Regulation of nitrogen fixation by Fe-S protein II in Azotobacter vinelandii. Eur J Biochem 77: 621–630, 1977.

    Article  CAS  Google Scholar 

  10. Carter KR, Rawlings J, Orme-Johnson WH, Becker RR, Evans HJ: Purification and characterization of a ferrodoxin from Rhizobium japonicum bacteroids. J Biol Chem 255: 4213–4233, 1980.

    PubMed  CAS  Google Scholar 

  11. Veeger C, Laane C, Scherings G, Matz L, Haaker H, Van Zeeland-Wolberts: Membrane energisation and nitrogen fixation in Azotobacter vinelandii and Rhizobium leguminosarum In: Nitrogen fixation 1 Free living systems and chemical models Newton WE, Orme-Johnson WH (eds), Baltimore, University Park Press, 1980, p 111–138.

    Google Scholar 

  12. Haaker H, Veeger C: Involvement of the cytoplasmic membrane in nitrogen fixation by Azotobacter vinelandii. Eur J Biochem 77: 1–10, 1977.

    Article  PubMed  CAS  Google Scholar 

  13. Aleem MJH, Lees H, Nicholas DJD: Adenosine triphosphate-dependent reduction of nicotinamide adenine dinucleotide by ferrocytochrome c in chemoautotrophic bacteria. Nature 200: 759–761, 1963.

    Article  PubMed  CAS  Google Scholar 

  14. Trinchant JC, Birot AM, Rigaud J: Oxygen supply and energy-yielding substrates for nitrogen fixation (acetylene reduction) by bacteroid preparations. J gen Microbiol 125: 159–165, 1981.

    CAS  Google Scholar 

  15. Blom J, Harkink R: Metabolic pathways for gluconeogenesis and energy generation in Frankia Avc I1. FEMS Microbiol Lett 11: 221–224, 1981.

    Article  CAS  Google Scholar 

  16. Baker D, Torrey JG, Kidd GH: Isolation by sucrose-density fractionation and cultivation in vitro of actinomycetes from nitrogen-fixing root nodules. Nature 281: 76–78, 1979.

    Article  Google Scholar 

  17. Tjepkema JD, Ormerod W, Torrey JG: Vesicle formation and acetylene reduction in Frankia sp CPU cultured in refined media. Nature 287: 633–635, 1980.

    Article  CAS  Google Scholar 

  18. Ziegler H: Untersuchungen über die Leitung und Sekretion der Assimilate. Planta 47: 447–500, 1956.

    Article  CAS  Google Scholar 

  19. Tjepkema JD, Yoccum CS: Respiration and oxygen transport in soybean nodules. Planta 115: 59–72, 1973.

    Article  CAS  Google Scholar 

  20. Tjepkema JD, Yoccum CS: Measurement of oxygen partial pressure within soybean nodules by oxygen microelectrodes. Planta 119: 351–360, 1974.

    Article  Google Scholar 

  21. Sinclair TR, Goudriaan J: Physical and morphological constraints on transport in nodules. Plant Physiol 67: 143–145, 1981.

    Article  PubMed  CAS  Google Scholar 

  22. Dixon ROD, Blunden EAG, Searle JW: Intercellular space and hydrogen diffusion in pea and lupin root nodules. Plant Sci Lett 23: 109–116, 1981.

    Article  CAS  Google Scholar 

  23. Bergersen FJ, Goodchild DJ: Aeration pathways in soybean root nodules. Aust J Biol Sci 26: 729–740, 1973.

    Google Scholar 

  24. Ellfolk N: Leghaemoglobin, a plant haemoglobin. Endeavor 31: 139–142, 1972.

    CAS  Google Scholar 

  25. Jensen E, Paludan K, Hyldig-Nielson JJ, Jorgensen P, Marcker KA: The structure of a chromosomal leghaemoglobin gene from soybean. Nature 291: 677–679, 1981.

    Article  Google Scholar 

  26. Dilworth MJ: The plant as the genetic determinant of leghaemoglobin production in the legume root nodule. Biochim Biophys Acta 184: 432–441, 1969.

    PubMed  CAS  Google Scholar 

  27. Sievers G, Muhtala ML, Ellfolk N: The primary structure of soybean (Glycine max) leghaemoglobin. Acta Chem Scand B 32: 380–286, 1978.

    Article  Google Scholar 

  28. Bergersen FJ, Goodchild DJ: Cellular location and concentration of leghaemoglobin in soybean root nodules. Aust J Biol Sci 26: 741–756, 1973.

    CAS  Google Scholar 

  29. Nadler KD, Avissar YJ: Heme synthesis in soybean root nodules. Plant Physiol 60: 433–436, 1977.

    Article  PubMed  CAS  Google Scholar 

  30. Verma DPS, Bal AK: Intracellular site of synthesis and localisation of leghaemoglobin in root nodules. Proc Nat Acad Soc 73: 3843–3847, 1976.

    Article  CAS  Google Scholar 

  31. Bergersen FJ: Leghaemoglobin, oxygen supply and nitrogen fixation: Studies with soybean nodules. In: Nitrogen Fixation Stewart WDP, Gallon JR (eds), New York, Academic Press, 1980, p 139–160.

    Google Scholar 

  32. Wheeler CT, Gordon JC, Ching TM: The oxygen relations of the root nodules of Alnus rubra Bong. New Phytol 82: 449–457, 1979.

    Article  CAS  Google Scholar 

  33. Tjepkema J : Oxygen relations in leguminous and actinorhizal nodules. In: Symbiotic nitrogen fixation in the management of temperature forests Gordon JC, Wheeler CT, Perry DA (eds), Corvallis, Oregon State University, 1979, p 175–816.

    Google Scholar 

  34. Phelps AS, Wilson PW: Occurrence of hydrogenase in nitrogen-fixing organisms. Proc Soc Exp Biol (NY) 47: 473–476, 1941.

    CAS  Google Scholar 

  35. Dixon ROD: Hydrogen uptake and exchange by pea root nodules. Ann Bot NS 31: 179–188, 1967.

    CAS  Google Scholar 

  36. Dixon ROD: Hydrogenase in pea root nodule bacteroids: Arch Mikrobiol 62: 272–283, 1968.

    Article  PubMed  CAS  Google Scholar 

  37. Dixon ROD: Hydrogenase in legume root nodule bacteroids: Occurrence and properties. Arch Mikrobiol 85: 193–201, 1972.

    Article  PubMed  CAS  Google Scholar 

  38. Schubert KR, Evans HJ: Hydrogen evolution: A major factor affecting the efficiency of nitrogen fixation in nodulated symbionts. Proc Nat Acad Sci USA 73: 1207–1211, 1976.

    Article  PubMed  CAS  Google Scholar 

  39. Evans HJ, Emerich DW, Ruiz-Argüeso T, Maier RJ, Albrecht SL: Hydrogen Metabolism in legume-Rhizobium symbiosis. In: Nitrogen fixation Newton WE, Orme-Johnson WH (eds), Baltimore University Park Press, p 69–86, 1980.

    Google Scholar 

  40. Evans HJ, Emerich DW, Maier RJ, Hanus FJ, Russell SA: Hydrogen cycling within the nodules of legumes and non-legumes and its role in nitrogen fixation. In: Symbiotic nitrogen fixation in the management of temperate forests Gordon JC, Wheeler CT, Perry DA (eds), Corvallis Oregon State University, 1979, p 196–206.

    Google Scholar 

  41. Bethnelfalvay GJ, Phillips DA: Ontogenetic interactions between photosynthesis and symbiotic nitrogen fixation in legumes. Plant Physiol 60: 419–421, 1977.

    Article  Google Scholar 

  42. Phillips DA: Efficiency of symbiotic nitrogen fixation in legumes. Ann Rev Plant Physiol 31: 29–49, 1980.

    Article  CAS  Google Scholar 

  43. Dixon ROD, Blunden EAG: unpublished.

    Google Scholar 

  44. Roelofson W, Akkermans ADL: Uptake and evolution of H2 and reduction of C2H2 by root nodules and nodule homogenates of Alnus glutinosa. Plant and Soil 52: 571–578, 1979.

    Article  Google Scholar 

  45. Laane C, Krone W, Konings W, Hasker H, Veeger C: Short term effect of ammonium chloride on nitrogen fixation by Azotobacter vinelandii and by bacteroids of Rhizobium leguminosarum. Eur J Biochem 103: 39–46, 1980.

    Article  PubMed  CAS  Google Scholar 

  46. Bergersen FJ, Turner GL: Nitrogen fixation by the bacteroid fraction of breis of soybean nodules. Biochim Biophys Acta 141: 507–515, 1967.

    PubMed  CAS  Google Scholar 

  47. O’Neal D, Joy KW: Glutamine synthetase of pea leaves. Plant Physiol 54: 773–779, 1974.

    Article  PubMed  Google Scholar 

  48. King J, Yung-Fan Wu W: Partial purification and kinetic properties of glutamic dehydrogenase form soybean cotyledons. Phytochemistry 10: 915–928, 1971.

    Article  CAS  Google Scholar 

  49. Brown CM, Dilworth MJ: Ammonia assimilation by Rhizobium cultures and bacteroids. J gen Microbiol 86: 39–48, 1975

    PubMed  CAS  Google Scholar 

  50. Robertson JG, Warburton MP, Farnden KJF: Induction of glutamate synthase during nodule development in lupin. FEBS Lett 55: 33–37, 1975.

    Article  PubMed  CAS  Google Scholar 

  51. Akkermans ADL, Roelofson W, Blom J: Dinitrogen fixation and ammonia assimilation in actinomycetous root nodules of Alnus glutinosa In: Symbiotic nitrogen fixation in the management of temperate forests Gordon JC, Wheeler CT, Perry DA (eds), Corvallis, Oregon State University, p 160–174, 1979.

    Google Scholar 

  52. Scott DB, Farnden KJF, Robertson JG: Ammonia assimilation in lupin nodules. Nature 263: 703–705, 1976.

    Article  CAS  Google Scholar 

  53. Pate JS, Atkins CA, White ST, Rainbird RM, Woo KC: Nitrogen fixation and xylem transport in ureide-producing grain legumes. Plant Physiol 65: 961–965, 1980.

    Article  PubMed  CAS  Google Scholar 

  54. Thomas RJ, Schrader LE: Ureide metabolism in higher plants. Phytochem 20: 361–371, 1981.

    Article  CAS  Google Scholar 

  55. Triplett EW, Blerins DG, Randall DD: Allantoic acid synthesis in soybean root nodule cytosol via xanthine dehydrogenase. Plant Physiol 65: 1203–1206, 1980.

    Article  PubMed  CAS  Google Scholar 

  56. Hanks JF, Tolbert NE, Schubert KR: Localisation of enzymes of ureide biosynthesis in peroxisomes and microsomes in nodules. Plant Physiol 68: 65–69, 1981.

    Article  PubMed  CAS  Google Scholar 

  57. Kapoor M, Waygood ER: Biosynthesis of nucleotides in wheat. Biochem Biophys Res Comm 9: 7–11, 1962.

    Article  CAS  Google Scholar 

  58. Robern H, Wang D, Waygood ER: Initial steps of purine biosynthesis in wheat germ. Can J Biochem 43: 225–235, 1965.

    Article  PubMed  CAS  Google Scholar 

  59. Iwai K, Nakegawas S, Osamu O: Isolation and identification of glycinamide ribonucleotide accumulated in pea seedlings in a folate-deficient state. Biochim Biophys Acta 68: 152–156, 1965.

    Article  Google Scholar 

  60. Leaf G, Gardner IC, Bond G: Observations on the composition and metabolism of the nitrogen-fixing root nodules of Alnus. J Exp Bot 9: 320–331, 1958.

    Article  CAS  Google Scholar 

  61. Leaf G, Gardner IC, Bond G: Observations on the composition and metabolism of the nitrogen-fixing root nodules of Myrica. Biochem J 72: 662–667, 1959.

    PubMed  CAS  Google Scholar 

  62. Wheeler CT, Bond G: The amino acids of non-legume root nodules. Phytochemistry 9: 705–708, 1970.

    Article  CAS  Google Scholar 

  63. Wheeler CT : Unpublished.

    Google Scholar 

  64. O’Neal TD, Taylor AW: Partial purification and properties of carbamoyl phosphate synthetase of Alaska pea. (Pisum sativum L cultivar Alaska). Biochem J 113: 271–279, 1979.

    Google Scholar 

  65. Schubert KR, Ryle GJA: The energy requirements for nitrogen fixation in nodulated legumes. In: Advances in legume science Summerfield RJ, Bunting AH (eds), Kew, Royal Botanic Gardens, 1980, p 85–96.

    Google Scholar 

  66. Lespinat PA, Gerster R, Berlier YM: Direct mass-spectrometric determination of the relationship between respiration, hydrogenase and nitrogenase activities in Azotobacter chroococcum Biochemie 60: 339–341, 1978.

    Article  CAS  Google Scholar 

  67. Dixon ROD, Berlier YM, Lespinat PA: Respiration and nitrogen fixation in nodulated roots of soya bean and pea. Plant Soil 61: 135–143, 1981.

    Article  CAS  Google Scholar 

  68. Schubert KR, Jennings NT, Evans HS: Hydrogen reactions of nodulated plants. II Effects on dry matter accumulation and nitrogen fixation. Plant Physiol 61: 398–401, 1978.

    Article  PubMed  CAS  Google Scholar 

  69. Nutman PS: IBP field experiments on nitrogen fixation by nodulated legumes. In: Symbiotic nitrogen fixation in plants Nutman PS (ed), Cambridge, Cambridge University Press, 1976, p 211–237.

    Google Scholar 

  70. Vincent JM: A manual for the practical study of root nodule bacteria IBP Handbook 15, Oxford, Blackwell Scientific Publications, 1970.

    Google Scholar 

  71. Dalton H: The cultivation of diazotrophic microorganisms. In: Methods for evaluating biological nitrogen fixation Bergersen FJ (ed), Chichester, Wiley, 1980, p 65–110.

    Google Scholar 

  72. Wheeler CT, Henson IE: Hormones in plants bearing nitrogen-fixing root nodules: the nodule as a source of cytokinins in Alnus glutinosa (L.) Gaertn. New Phytol 80: 557–565, 1978.

    Article  CAS  Google Scholar 

  73. Gadgil RL: The nutritional role of Lupinus arboreus in coastal sand dune forestry. I: The potential influence of undamaged lupin plants on nitrogen uptake by Pinus radia ta. Pl Soil 34: 357–367, 1971.

    Article  CAS  Google Scholar 

  74. Moiroud A, Capellano A, Bärtschi H: Fixation d’azote chez les espèces ligneuses symbiotiques. I. Ultrastructure des nodules, mycorhizes à vésicules et à arbuscules et activité réductrice de C2H2 de jeunes plants de Robinia pseudoacacia cultivés au laboratoire. Can J Bot 59:480–490, 1981.

    Article  Google Scholar 

  75. Akkermans A: Symbiotic nitrogen fixers available for use in temperate forestry. In: Symbiotic nitrogen fixation in the management of temperate forests Gordon JC, Wheeler CT, Perry DA (eds), Corvallis, School of Forestry, Oregon State University, 1979, p 23–37.

    Google Scholar 

  76. Ek-Jander J, Fahraeus G: Adaptation of Rhizobium to subarctic environment in Scandinavia. Pl Soil, Special Volume: 129–138, 1971.

    Google Scholar 

  77. Eaglesham A, Seaman B, Ahmad H, Hassouna S, Ayanaba A, Mulongoy K: High temperature tolerant ‘cowpea’ rhizobia. In: Current perspectives in nitrogen fixation Gibson AH, Newton WE (eds), Canberra, Aust Acad Sci, 1981, p 436.

    Google Scholar 

  78. Ranga Rao V: Effect of root temperature on the infection process and nodulation in Lotus and Stylosanthes. J Exp Bot 28: 241–259, 1977.

    Article  Google Scholar 

  79. Gibson AH: Factors in the physical and biological environment affecting nodulation and nitrogen fixation by legumes. Pl Soil, Special Volume: 139–152, 1971.

    Google Scholar 

  80. Kumarasinghe RMK, Nutman PS: The influence of temperature on root hair infection of Trifolium parviflorum and Trifolium glomeratum. J Exp Bot 30: 503–515, 1979.

    Article  Google Scholar 

  81. Lie TA: Environmental effects on nodulation and symbiotic nitrogen fixation. In: The biology of nitrogen fixation Quispel A (ed), Amsterdam, North Holland/Elsevier, 1974.

    Google Scholar 

  82. Roughley RJ, Dart PJ: Root temperature and root hair infection of Trifolium subterraneum L. cv. Cranmore. Pl Soil 32: 518–20, 1970.

    Article  Google Scholar 

  83. Roughley RJ, Dart PJ: Growth of Trifolium subterraneum, selected for spare and abundant nodulation as affected by root temperature and Rhizobium strain. J Exp Bot 21: 776–786,1970.

    Article  Google Scholar 

  84. Gibson AH: Physical environment and symbiotic nitrogen fixation. VI. Nitrogen retention within the nodules of Trifolium subterraneum L. Aust J Biol Sci 22: 829–838, 1969.

    Google Scholar 

  85. Roughley RJ: The influence of root temperature, Rhizobium strain and host selection in the structure and nitrogen-fixing efficiency of the root nodules of Trifolium subterraneum. Ann Bot 34: 631–646, 1970.

    Google Scholar 

  86. Gibson AH: Recovery and compensation by nodulated legumes to environmental stress. In: Symbiotic nitrogen fixation in plants Nutman PS (ed), Cambridge, Cambridge University. Press, 1976, 385–404.

    Google Scholar 

  87. Roughley RJ, Dart PJ, Day JM: The structure and development of Trifolium subterraneum L. root nodules. II. In plants grown at sub-optimal root temperatures. J Exp Bot 27: 431–440, 1976.

    Article  Google Scholar 

  88. Fyson A: Effects of low temperature on the development and functioning of the root nodules of Vicia faba L. PhD Thesis, University of Dundee, 1981.

    Google Scholar 

  89. Pankhurst CE, Gibson AH: Rhizobium strain influences and disruption of clover nodule development at high root temperature. J Gen Microbiol 74: 219–231, 1973.

    CAS  Google Scholar 

  90. Wollum AG, Youngberg CT: Effect of soil temperature on nodulation of Ceanothus velutinus. Proc Soil Sci Soc Amer 33: 801–803, 1969.

    Article  Google Scholar 

  91. Waughman GJ: The effect of temperature on nitrogenase activity. J Exp Bot 28: 949–960, 1977.

    Article  CAS  Google Scholar 

  92. Wheeler CT : The causation of the diurnal fluctuation in nitrogen fixation in Alnus glutinosa. New Phytol 70: 487–496, 1971.

    Article  Google Scholar 

  93. Hensley DL, Carpenter PL: The effect of temperature on N2 fixation (C2H2 reduction) by nodules of legumes and actinomycete-nodulated woody species. Bot Gaz 140: 558–564, 1979.

    Article  Google Scholar 

  94. Bond G, Mackintosh AH: Diurnal changes in nitrogen fixation in the root nodules of Casuarina. Proc Roy Soc B 192: 1–12, 1975.

    Article  CAS  Google Scholar 

  95. Granhall V, Lid-Torsvik V: Nitrogen fixation by bacteria and free living blue green algae in tundra area. In: Fennoscandian Tundra Ecosystems Pt. 1. Plants and microorganisms Wielgolaski FE (ed), Ecological studies 16, Berlin, Springer Verlag, p 305–315.

    Google Scholar 

  96. Akkermans ADL: Nitrogen fixation and nodulation of Alnus and Hippophae under natural conditions. PhD Thesis, University of Leiden, 1971.

    Google Scholar 

  97. Wheeler CT, Perry DA, Helgerson O, Gordon JC: Winter fixation of nitrogen in scotch broom (Cytisus scoparius L.). New Phytol 82: 697–701, 1979.

    Article  CAS  Google Scholar 

  98. Wheeler CT, McLaughlin ME, Steele P: A comparison of symbiotic nitrogen fixation in Scotland in Alnus glutinosa and Alnus rubra. Pl Soil 61: 169–188, 1981.

    Article  CAS  Google Scholar 

  99. Gibson AH: Root temperature and symbiotic nitrogen fixation. Nature, London 191: 1080–1081, 1961.

    Article  Google Scholar 

  100. Ching TM, Hedtke S, Russell SA, Evans HJ: Energy state and dinitrogen fixation in soybean nodules of dark grown plants. Pl Physiol 55: 796–798, 1975.

    Article  CAS  Google Scholar 

  101. Lie TA: Environmental effects on nodulation and symbiotic nitrogen fixation. In: The biology of nitrogen fixation Quispel A (ed), Amsterdam, North-Holland, 1974, p 555–582.

    Google Scholar 

  102. Sprent JI, Silvester WB: Nitrogen fixation by Lupinus arboreus grown in the open and under different aged stands of Pinus radiata. New Phytol 72: 991–1003, 1973.

    Article  CAS  Google Scholar 

  103. Vezina PE, Boulter DKW: The spectral composition of near ultraviolet and visible radiation beneath forest canopies. Can J Bot 44: 1267–1284, 1966.

    Article  Google Scholar 

  104. Atzet T, Waring RH: Selective filtering of light by coniferous forests and minimum light energy requirements for regeneration. CanJ Bot 48: 2163–2167, 1970.

    Article  Google Scholar 

  105. Virtanen AI, Moisio T, Burris RH: Fixation of nitrogen by nodules excised from illuminated and darkened pea plants. Acta Chem Scand 9: 184–193, 1955.

    Article  CAS  Google Scholar 

  106. Roponen IE: The effect of darkness on the leghaemoglobin content and amino-acid levels in the root nodules of pea plants. Physiol Plant 23: 452–460, 1970.

    Article  CAS  Google Scholar 

  107. Wheeler CT, Bowes BG: Effects of light and darkening upon nitrogen fixation in root nodules of Alnus glutinosa in relation to their cytology. Z Pflanzenphysiol 71: 71–75, 1974.

    Google Scholar 

  108. Lawn RJ, Brun WA: Symbiotic nitrogen fixation in soybeans. I. Effect of photosynthetic source-link manipulations. Crop Sci 14: 11–16, 1974.

    Article  CAS  Google Scholar 

  109. Bethlenfalvay GJ, Phillips DA: Effect of light intensity on efficiency of carbon dioxide and nitrogen reduction in Pisum sativum L. Plant Physiol 60: 868–871, 1977.

    Article  PubMed  CAS  Google Scholar 

  110. Wilson PW, Fred EB, Salmon MR: Relation between carbon dioxide and elemental nitrogen assimulation in leguminous plants. Soil Sci 35: 145–165, 1933.

    Article  CAS  Google Scholar 

  111. Phillips DA, Newell KD, Hassell SA, Felling CE: Effect of CO2 enrichment on root nodule development and symbiotic N2 reduction in Pisum sativum L. Am J Bot 63: 356–362, 1976.

    Article  Google Scholar 

  112. Hardy RWF, Havelka UD: Photosynthate as a major factor limiting nitrogen fixation by field-grown legumes with emphasis on soybeans. In: Symbiotic nitrogen fixation in plants, Nutman PS (ed), IBP 7, Cambridge, Cambridge University Press, 1976, p 421–442.

    Google Scholar 

  113. Lawn RJ, Fischer KS, Brun WA: Symbiotic nitrogen fixation in soybeans. II. Inter-relationship between carbon and nitrogen assimilation. Crop Sci 14: 17–22, 1974.

    Article  CAS  Google Scholar 

  114. De Jong TM, Phillips DA: Nitrogen stress and apparent photosynthesis in symbiotically grown Pisum sativum L. Pl Physiol 68: 309–313, 1981.

    Article  Google Scholar 

  115. Nátr L: Influence of mineral nutrition on photosynthesis and the use of assimilates. In: Photosynthesis and productivity in different environments Cooper JP (ed), Cambridge, Cambridge University Press, 1975, p 537–555.

    Google Scholar 

  116. Masterson CL, Murphy PM: Application of the acetylene reduction technique to the study of nitrogen fixation by white clover in the field. In: Symbiotic nitrogen fixation in plants Nutman PS (ed), IBP 7, Cambridge, Cambridge University Press, 1976, p 299–318.

    Google Scholar 

  117. Eckart JF, Raguse CA: Effects of diurnal variation in light and temperature on the acetylene reduction activity (nitrogen fixation) of subterranean clover. Agron J 72: 519–523.

    Google Scholar 

  118. Mague TH, Burris RH: Reduction of acetylene and nitrogen by field-grown soybeans. New Phytol 71: 275–286, 1972.

    Article  CAS  Google Scholar 

  119. Trinick MJ, Dilworth MJ, Grounds M: Factors affecting the reduction of acetylene by root nodules of Lupinus species. New Phytol 77: 359–370, 1976.

    Article  CAS  Google Scholar 

  120. Minchin FR, Pate JS: Diurnal functioning of the legume root nodule. J Exp Bot 25: 295–308, 1974.

    Article  CAS  Google Scholar 

  121. Johnsrud SC: Nitrogen fixation by root nodules of Alnus incana in a Norwegian forest ecosystem. Oikos 30: 475–479, 1978.

    Article  Google Scholar 

  122. Tripp LN, Bezdirek D, Heilman PE: Seasonal and diurnal patterns and rates of nitrogen fixation by young red alder. Forest Sci 25: 371–380, 1979.

    Google Scholar 

  123. Wheeler CT : The diurnal fluctuation in nitrogen fixation in the nodules of Alnus glutinosa and Myrica gale. New Phytol 68: 675–682, 1969.

    Article  Google Scholar 

  124. Wheeler CT, Lawrie AC: Nitrogen fixation in root nodules of alder and pea in relation to the supply of photosynthetic assimilates. In: Symbiotic nitrogen fixation in plants Nutman PS (ed), IBP 7, Cambridge, Cambridge University Press, 1976, p 497–509.

    Google Scholar 

  125. McNiel RE, Carpenter PL: The effect of temperature, solar radiation and moisture on the reduction of acetylene by excised root nodules from Alnus glutinosa. New Phytol 82: 459–465, 1979.

    Article  CAS  Google Scholar 

  126. Sprent JI, Silvester WB: Nitrogen fixation by Lupinus arboreus grown in the open and under different aged stands of Pinus radiata. New Phytol 72: 991–1004, 1973.

    Article  CAS  Google Scholar 

  127. Lawrie AC, Wheeler CT: Nitrogen fixation in the root nodules of Vicia faba L. in relation to the assimilation of carbon. I. Plant growth and metabolism of photosynthetic assimilates. New Phytol 74: 429–436,1975.

    Article  CAS  Google Scholar 

  128. Hardy RWF, Burns RC, Herbert RR, Holsten RD, Jackson EK: Biological nitrogen fixation: a key to world protein. Pl Soil, Special Volume: 561–590, 1971.

    Google Scholar 

  129. Sprent JI: Nitrogen fixation by legumes subjected to water and light stresses. In: Symbiotic nitrogen fixation in plants Nutman PS (ed), IBP 7, Cambridge, Cambridge University Press, 1976, p 405–420.

    Google Scholar 

  130. Sprent JI, Bradford AM, Norton C: Seasonal growth patterns in field beans (Vicia faba) as affected by population density, shading and its relationships with soil moisture. J Agric Sci, Camb. 88: 293–301, 1977.

    Article  Google Scholar 

  131. Pizelle G: Variations saisonnières de l’activité nitrogénasique des nodules d’Alnus glutinosa (L.) Gaertn., d’Alnus incana L. Moench et d’Alnus cordata (Lois.) Desf CR Acad Sc Paris, D 281: 1829–1832, 1975.

    CAS  Google Scholar 

  132. Sprent JI, Scott R, Perry KM: The nitrogen economy of Myrica gale in the field. J Ecol 66: 657–668, 1978.

    Article  Google Scholar 

  133. Dalton DA, Zobel DB: Ecological aspects of nitrogen fixation by Purshia tridentata. Pl Soil 48: 57–80, 1977.

    Article  CAS  Google Scholar 

  134. Stewart WDP, Pearson MC: Nodulation and nitrogen fixation by Hippophae rhamnoides in the field. Pl Soil 26: 348–360, 1967.

    Article  CAS  Google Scholar 

  135. Vincent JM: Rhizobium: general microbiology. In: A treatise on biological nitrogen fixation. III. Biology Hardy RWF, Gibson AH (eds), New York, Wiley, 1977, p 277–366.

    Google Scholar 

  136. Mulder EG, van Veen WL: Effect of pH and organic compounds on nitrogen fixation by red clover. Pl Soil 13: 91–113, 1960.

    Article  CAS  Google Scholar 

  137. Munns DN: Mineral nutrition and the legume symbiosis. In: A treatise on dinitrogen fixation. IV. Agronomy and ecology Hardy RWF, Gibson AH (eds), New York, Wiley, 1977, p 353–391.

    Google Scholar 

  138. Mulder EG, Lie TA, Houwers A: The importance of legumes under temperate conditions. In: A treatise on dinitrogen fixation. IV. Agronomy and ecology Hardy RWF, Gibson AH (eds), New York, Wiley, 1977, p 221–242.

    Google Scholar 

  139. Lie TA: Effect of low pH on different phases of nodule formation in pea plants. Pl Soil 31 : 391–406, 1969.

    Article  Google Scholar 

  140. Munns DN: Nodulation of Medicago sativa in solution culture. I. Acid-sensitive steps. Pl Soil 28: 129–146, 1968.

    Article  Google Scholar 

  141. Andrew CS: Effect of Ca, pH and nitrogen on growth and chemical composition of tropical and temperate pasture legumes. I. Nodulation and growth. Aust J Agr Res 29: 611–623, 1976.

    Article  Google Scholar 

  142. Munns DN, Fox RL, Koch BL: Influence of lime on nitrogen fixation by legumes. Pl Soil 46: 591–601, 1977.

    Article  CAS  Google Scholar 

  143. Bond G: The fixation of nitrogen associated with the root nodules of Myrica gale L. with special reference to its pH relation and ecological significance. Ann Bot 25: 447–459, 1951.

    Google Scholar 

  144. Canizo A, Miguel C, Rodriguez-Barrueco C: The effect of pH on nodulation and growth of Coriaria myrtifolia L. Pl Soil 94: 195–198, 1978.

    Article  Google Scholar 

  145. Bond G, Fletcher WW, Ferguson TP: The development and function of the root nodules of Alnus, Myrica and Hippophae. Pl Soil 5: 309–323, 1954.

    Article  Google Scholar 

  146. Ferguson TP, Bond G: Observations on the formation and function of the root nodules of Alnus glutinosa (L.) Gaertn. Ann Bot 17: 175–188, 1953.

    CAS  Google Scholar 

  147. Bond G: The development and significance of the root nodules of Casuarina. Ann Bot 21: 373–380, 1957.

    Google Scholar 

  148. Bond G, MacConnell JT, McCallum AH: The nitrogen nutrition of Hippophae rhamnoides. Ann Bot 20: 501–512, 1956.

    CAS  Google Scholar 

  149. Gardner IC, Bond G: Observations on the root nodules of Shepherdia. Can J Bot 35: 305–314, 1957.

    Article  Google Scholar 

  150. Bond G: Symbiosis of leguminous plants and nodule bacteria. III. Observations on the growth of soya beans in water culture. Ann Bot 14: 245–261, 1950.

    CAS  Google Scholar 

  151. Nyatsanga T, Pierre WH: Effect of nitrogen fixation by legumes on soil acidity. Agron J 65: 936–940, 1973.

    Article  CAS  Google Scholar 

  152. Franklin JF, Dyrness CT, Moore DG, Tarrant RF: Chemical soil properties under coastal Oregon stands of alder and conifers. In: Biology of alder Trappe JM, Franklin JF, Tarrant RF, Hansen GM (eds), Portland, Oregon Pacific Northwest Forest and Range Experiment Station, USDA, 1968, p 157–172.

    Google Scholar 

  153. Israel DW, Jackson WA: The influence of nitrogen nutrition on ion uptake and translocation by leguminous plants. In: Mineral nutrition of legumes in tropical and sub-tropical soils Andrew CS, Kamprath EJ (eds), Melbourne, CSIRO, 1978, 112–129.

    Google Scholar 

  154. Crocker RL, Major J: Soil development in relation to vegetation and surface age at Glacier Bay, Alaska. J Ecol 43: 427–448, 1955.

    Article  Google Scholar 

  155. Mitchell WW: On the ecology of sitka alder in the subalpine zone of South-central Alaska. In: Biology of alder Trappe JM, Franklin JF, Tarrant RF, Hansan GM (eds), Portland, Oregon, Pacific North West Forest and Range Experimental Station, USDA, 1968, p 45–56.

    Google Scholar 

  156. Robson AD: Mineral nutrients limiting nitrogen fixation in legumes. In: Mineral nutrition of legumes in tropical and sub-tropical soils Andrew CS, Kamprath EJ (eds), Melbourne, CSIRO, 1978, 277–294.

    Google Scholar 

  157. Dart PJ, Pate JS: Nodulation studies in legumes. III. The effects of delaying inoculation on the seedling symbiosis of barrel medic, Medicago tribuloides Desr. Aust J Biol Sci 12: 427–441, 1959.

    Google Scholar 

  158. Holding AJ, Lowe J F : Some effects of acidity and heavy metals on the Rhizobium leguminous plant association. Pl Soil, Special Volume: 153–166, 1971.

    Google Scholar 

  159. Andrew CS: Mineral characterisation of tropical forage legume. In: Mineral nutrition of legumes in tropical and sub-tropical soils Andrew CS, Kamprath EJ (eds), Melbourne, CSIRO, 1978, 93–112.

    Google Scholar 

  160. Andrew CS: Effect of calcium, pH and nitrogen on the growth and chemical composition of some tropical and temperature pasture legume species. Aust J Agric Res 27: 611–623, 1976.

    Article  CAS  Google Scholar 

  161. Lowther WL, Lonerogan JF: Calcium and nodulation in subterraneum clover (Trifolium subterraneum L.). Pl Physiol 43: 1362–1366, 1968.

    Article  CAS  Google Scholar 

  162. Munns DN: Nodulation of Medicago sativa in solution culture. V. Calcium and pH requirements during infection. Pl Soil 32: 92–102, 1970.

    Article  Google Scholar 

  163. Ovington JD: The calcium and magnesium contents of tree species grown in close stands. New Phytol 58: 164–175, 1959.

    Article  Google Scholar 

  164. Youngberg CT, Wollum AG: Nitrogen accretion in developing Ceanothus velutinus soils. Soil Sci Soc Amer J 40: 109–112, 1976.

    Article  CAS  Google Scholar 

  165. Zarovy MG, Munns DN: Nodulation and growth of Lablab purpureus in relation to Rhizobium strain, liming and phosphorus. Pl Soil 53: 329–337, 1979.

    Article  Google Scholar 

  166. Smith SE, Daft MJ: Interactions between growth, phosphate content and nitrogen fixation in mycorrhizal and non-mycorrhizal Medicago sativa. Aust J Pl Physiol 4: 403–413, 1977.

    Article  CAS  Google Scholar 

  167. Daft MJ: Nitrogen fixation in nodulated and mycorrhizal crop plants. Ann Appl Biol 88: 461–2, 1978.

    Article  Google Scholar 

  168. Munns DN, Mosse B: Mineral nutrition of legume crops. In: Advances in legume science Summerfield RJ, Bunting AH (eds), Kew, Royal Botanic Gardens, 1980.

    Google Scholar 

  169. Riffle JW: First report of vesicular arbuscular mycorrhizae in Elaeagnus augustifolia. Mycologia 69: 1200–1203, 1977.

    Article  Google Scholar 

  170. Mejstrik V, Benecke U: The ectotrophic mycorrhizae of Alnus viridis (Chaix) DC and their significance in respect to phosphorus uptake. New Phytol 68: 141–149, 1969.

    Article  Google Scholar 

  171. Molina R: Ectomycorrhizal specificity in the genus Alnus. Can J Bot 57: 325–334, 1979.

    Article  Google Scholar 

  172. Rose SL, Youngberg CT: Tripartite associations in snowbrush (Ceanothus velutinus): effect of vesicular-arbuscular mycorrhizae on growth, nodulation and nitrogen fixation. Can J Bot 59: 34–49, 1981.

    Article  CAS  Google Scholar 

  173. Evans HJ, Russell SA: Physiological chemistry of symbiotic nitrogen fixation by legumes. In: The chemistry and biochemistry of nitrogen fixation Postgate JR (ed), London, Plenum Press, 1971, 191–245.

    Google Scholar 

  174. Becking JH: Root nodules in non-legumes. In: The development and function of roots Torrey JG, Clarkson DT (eds), London Academic Press, 1976, p 507–566.

    Google Scholar 

  175. Bond G, Hewitt EJ: Molybdenum and the fixation of nitrogen in Myrica gale root nodules. Nature 190: 1033–1034, 1961.

    Article  CAS  Google Scholar 

  176. De Hertogh AA, Mayeux PA, Evans HJ : The relationship of cobalt requirement to propionate metabolism in Rhizobium. J Biol Chem 239: 2446–2453, 1964.

    Google Scholar 

  177. De Hertogh AA, Mayeux PA, Evans HJ: Effect of cobalt on the oxidation of propionate by Rhizobium meliloti. J Bacteriol 87: 746–747, 1964.

    Google Scholar 

  178. Cowles JR, Evans HJ, Russell SA: B12 coenzyme-dependent ribonucleotide reductase in Rhizobium species and the effect of cobalt deficiency on the activity of the enzyme. J Bacteriol 97: 1460–1465, 1969.

    PubMed  CAS  Google Scholar 

  179. Gladstones JS, Loneragan JF, Goodchild NA: Field responses to cobalt and molybdenum by different legume species, with inferences on the role of cobalt in legume growth. Aust J Agric Res 28: 619–628, 1977.

    Article  Google Scholar 

  180. Chatel DL, Robson AD, Gartrell JW, Dilworth MJ: The effect of inoculation and cobalt application on the growth and nitrogen fixation of sweet lupin. AustJ Agr Res 29: 1191–1202, 1978.

    Article  CAS  Google Scholar 

  181. Dilworth MJ, Robson AD, Chatel DL: Cobalt and nitrogen fixation in Lupinus angustifolius L. II. Nodule formation and function. New Phytol 83: 63–79, 1979.

    Article  CAS  Google Scholar 

  182. Robson AD, Dilworth MJ, Chatel DL: Cobalt and nitrogen fixation in Lupinus angustifolius L. I. Growth, nitrogen concentration and cobalt distribution. New Phytol 83: 53–62, 1979.

    Article  CAS  Google Scholar 

  183. Bond G, Adams JF, Kennedy EH: Vitamin B12 analogues in non-legume root nodules. Nature, 207: 319–320, 1965.

    Article  PubMed  CAS  Google Scholar 

  184. Bond G, Hewitt EJ: Cobalt and the fixation of nitrogen by root nodules of Alnus and Casuarina. Nature, Lond 195: 94–95, 1962.

    Article  CAS  Google Scholar 

  185. Hewitt EJ, Bond G: The cobalt requirement of non-legume root nodule plants. J Exp Bot 17: 480–491, 1966.

    Article  CAS  Google Scholar 

  186. Waksman SA: The actinomycetes. New York, Ronald Press, 1967, 168–169.

    Google Scholar 

  187. Metzler DE: Biochemistry. New York, Academic Press, 1977, p 539.

    Google Scholar 

  188. Wilson PW: The biochemistry of symbiotic nitrogen. Madison, University of Wisconsin Press, 1940.

    Google Scholar 

  189. Dart PJ, Wildon DC: Nodulation and nitrogen fixation by Vigna sinensis and Vicia atro- purpurea: the influence of concentration, form and site of application of combined nitrogen. Aust J Agric Res 21: 45–56, 1970.

    Article  CAS  Google Scholar 

  190. Alios HF, Bartholomew WV: Replacement of symbiotic fixation by available nitrogen. Soil Sci 87: 61–66, 1959.

    Article  Google Scholar 

  191. Virtanen AI, Jorma J, Linkola H, Linnasalmi A: On the relation between nitrogen fixation and leghaemoglobin content of leguminous root nodules. Acta Chem Scand 1: 90–111, 1947.

    Article  PubMed  CAS  Google Scholar 

  192. Pizelle G: L’azote minéral et la nodulation de l’aune glutineux (Alnusglutinosa). II. Observations sur l’action inhibitrice de l’azote minéral a l’égard de la nodulation. Ann. Inst. Pasteur 111: 259–264, 1966.

    Google Scholar 

  193. Cartwright PM: The effect of combined nitrogen on the growth and nodulation of excised roots of Phaseolus vulgaris L. Ann Bot 31: 309–321, 1967.

    CAS  Google Scholar 

  194. Dreyfus BL, Dommergues YR: Non-inhibition of nitrogen fixation by combined nitrogen in a stem bearing nodules in the legume Sesbania rostrata CR Acad Sci Ser D 291: 767–770,1980.

    Google Scholar 

  195. Small JGC, Leonard AO: Translocation of C14-labelled photosynthate in nodulated legumes as influenced by nitrate nitrogen. Amer J Bot 56: 187–194, 1969.

    Article  CAS  Google Scholar 

  196. Raggio M, Raggio N, Torrey JG: The interaction of nitrate and carbohydrates in rhizobial root nodule formation. Pl Physiol 40: 601–606, 1965.

    Article  CAS  Google Scholar 

  197. Chen P-C, Phillips DA: Induction of nodule senescence by combined nitrogen in Pisum sativum. Pl Physiol 59: 440–442, 1977.

    Article  CAS  Google Scholar 

  198. Streeter JG: Effect of nitrate in the rooting medium on carbohydrate composition of soybean nodules. Pl Physiol 68: 840–844, 1981.

    Article  CAS  Google Scholar 

  199. Darbyshire JF: Studies on the physiology of nodule formation. IX. The influence of combined nitrogen, glucose, light intensity and dry length on root-hair infection in clover. Ann Bot 30: 623–638, 1966.

    CAS  Google Scholar 

  200. Dixon ROD: Rhizobia (with particular reference to relationships with host plants). Ann Rev Microbiol 23: 137–158, 1969.

    Article  CAS  Google Scholar 

  201. Munns DN: Nodulation of Medicago sativa in solution culture. II. Compensating effects of nitrate and of prior nodulation. Pl Soil 28: 246–257, 1968.

    Article  CAS  Google Scholar 

  202. Munns DN: Nodulation of Medicago sativa in solution culture III. Effects of nitrate on root hairs and infection. Pl Soil 29: 33–47, 1968.

    Article  CAS  Google Scholar 

  203. Kennedy IR, Rigaud J, Trinchant JC: Nitrate reductase from bacteroids of Rhizobium japoni- cum: enzyme characteristics and possible interactions with nitrogen fixation. Biochim Biophys Acta 397: 24–35, 1975.

    PubMed  CAS  Google Scholar 

  204. Tanner JW, Anderson IC: An external effect of inorganic nitrogen in root nodulation. Nature 198: 303–4, 1963.

    Article  CAS  Google Scholar 

  205. Dart PJ: The infection process. In: The biology of nitrogen fixation Quispel A (ed), Amsterdam, North Holland, 1974, p 381–429.

    Google Scholar 

  206. Libbenga KR, Bogers RJ: Root nodule morphogenesis. In: The biology of nitrogen fixation Quispel A (ed), Amsterdam, North Holland, 1974, p 430–472.

    Google Scholar 

  207. Gibson AH, Pagan JD: Nitrate effects on the nodulation of legumes inoculated with nitrate- reductase-deficient mutants of Rhizobium. Planta 134: 17–22, 1977.

    Article  CAS  Google Scholar 

  208. Veeger C, Haaker H, Laane C: Energy transduction and nitrogen fixation. In: Current perspectives in nitrogen fixation Gibson AH, Newton WE (eds), Canberra, Aust Acad Sci, 1981, p 101–104.

    Google Scholar 

  209. Salminen SO: Effect of NH +4 on nitrogenase activity in nodule breis and bacteroids from Pisum sativum L. Biochim Biophys Acta 658: 1–9, 1981.

    PubMed  CAS  Google Scholar 

  210. Johnson JW, Welch LF, Kurtz LT: Environmental implications of N fixation by soybeans. J Environ Qual 40: 303–306, 1975.

    Article  Google Scholar 

  211. Randall DD, Russell WJ, Johnson DR: Nodule nitrate reductase as a source of reduced nitrogen in soybean, Glycine max Pl Physiol 44: 325–328, 1978.

    Article  CAS  Google Scholar 

  212. Wheeler CT, McLaughlin ME: Environmental nodulation of nitrogen fixation in actino- mycete nodulated plants. In: Symbiotic nitrogen fixation in the management of temperate forests Gordon JC, Wheeler CT, Perry DA (eds), Corvallis, School of Forestry, Oregon State University, 1978, p 124–142.

    Google Scholar 

  213. Stewart WDP, Bond G: The effect of ammonium nitrogen on fixation of elemental nitrogen in Alnus and Myrica. Pl Soil 14: 347–359, 1961.

    Article  CAS  Google Scholar 

  214. Rodriguez-Barrueco D, Mackintosh AH, Bond G; Some effects of combined nitrogen on the nodule symbioses of Casuarina and Ceanothus. Pl Soil 33: 129–139, 1970.

    Article  Google Scholar 

  215. Ingestad T: Growth, nutrition and nitrogen fixation in grey alder at varied rates of nitrogen addition. Physiol Plant 50: 353–364, 1980.

    Article  CAS  Google Scholar 

  216. Lahair E, Harper JE, Hageman RH: Improved soybean growth in urea with pH buffered by a carboxy resin. Crop Sci 16: 325–328, 1976.

    Article  Google Scholar 

  217. Vigue JT, Harper JE, Hageman RH, Peters DB: Nodulation of soybeans grown hydroponi- cally on urea. Crop Sci 17: 169–172, 1976.

    Article  Google Scholar 

  218. Eaglesham ARJ, Day J, Dart PJ: Rep. Rothamstead Exp. Sta., 85, 1973.

    Google Scholar 

  219. Zavitkovski J, Newton M: Effect of organic matter and combined nitrogen on nodulation and nitrogen fixation in red alder. In: Biology of alder Trappe JM, Franklin JF, Tarrant RF, Hansen GF (eds), Portland, Oregon, Pacific North West Forest and Range Experimental Station, USDA, 1968, p 157–172.

    Google Scholar 

  220. Sprent JI: Water deficits and nitrogen-fixing root nodules. In: Water deficits and plant growth IV. New York, Academic Press, 1976, p 291–315.

    Google Scholar 

  221. Osa-afiana LO, Alexander M: Effect of moisture on the survival of Rhizobium in soil. Soil Sci Soc Amer J 43: 925–930, 1979.

    Article  Google Scholar 

  222. Pena-cabriales JJ, Alexander M: Survival of Rhizobium in soils undergoing drying. Soil Sci Soc Amer J 43: 962–966, 1979.

    Article  Google Scholar 

  223. Chatel DL, Parker CA: Survival of field-grown Rhizobia over the dry summer period in Western Australia. Soil Biol Biochem 5: 415–423, 1973.

    Article  Google Scholar 

  224. Sprent JI: Nitrogen fixation by legumes subjected to water and light stresses. In: Symbiotic nitrogen fixation in plants Nutman PS (ed), IBP 7, Cambridge, Cambridge University Press, 1976, p 405–420.

    Google Scholar 

  225. Sprent JI: The effects of water stress on nitrogen fixing root nodules. I. Effects on the physiology of detached soybean nodules. New Phytol 70: 9–17, 1971.

    Article  CAS  Google Scholar 

  226. Pankhurst CE, Sprent JI: Effects of water stress on the respiratory and nitrogen-fixing activity of soybean root nodules. J Exp Bot 26: 287–304, 1975.

    Article  CAS  Google Scholar 

  227. Minchin FR, Pate JS: Effect of water, aeration and salt regime on nitrogen fixation in a nodulated legume-definition of an optimum root environment. J Exp Bot 26: 60–69, 1975.

    Article  CAS  Google Scholar 

  228. Tatazawa M, Yoshida S: Stem nodules in Aeschynomene indica and their capacity of nitrogen fixation. Physiol Plant 45: 293–295, 1979.

    Article  Google Scholar 

  229. McVean DN: Ecology of Alnus glutinosa (L.) Gaertn. IV. Root system. J Ecol 43: 219–225, 1955.

    Article  Google Scholar 

  230. Bond G: Root-nodule symbioses with actinomycete-like organisms. In: Quispel A (ed), The Biology of nitrogen fixation North Holland, Amsterdam, 1974, p 342–380.

    Google Scholar 

  231. Huang C-T, Boyer JS, Vanderhoeff LN: Acetylene reduction (nitrogen fixation) and metabolic activities of soybean having various leaf and nodule water potentials. Pl Physiol 56: 222–227, 1975.

    Article  CAS  Google Scholar 

  232. Huang C-T, Boyer JS, Vanderhoeff LN: Limitation of acetylene reduction (nitrogen fixation) and metabolic activities of soybean having various leaf and nodule water potentials. Pl Physiol 56: 228–232, 1975.

    Article  CAS  Google Scholar 

  233. Patterson P, Raper DC, Gross HD: Growth and specific nodule activity of soybeans during application and recovery of a leaf moisture stress. Pl Physiol 64: 551–556, 1979.

    Article  CAS  Google Scholar 

  234. Ching TM, Hedtke S, Russell SA, Evans HJ: Energy state and dinitrogen fixation in soybean nodules of dark grown plants. Pl Physiol 55: 796–798, 1975.

    Article  CAS  Google Scholar 

  235. Sprent JI: Growth and nitrogen fixation in Lupinus arboreus as affected by shading and water supply. New Phytol 72: 1005–1022, 1973.

    Article  Google Scholar 

  236. Albrecht SL, Bennett JM, Quesenberry KH: Growth and nitrogen fixation of Aeschynomene under water stressed conditions. Pl Soil 60: 309–315, 1981.

    Article  CAS  Google Scholar 

  237. Helgerson OT, Wheeler CT, Perry DA, Gordon JC: Annual nitrogen fixation in Scotch Broom (Cytisus scoparius L.). In: Symbiotic nitrogen fixation in the management of temperate forests. Gordon JC, Wheeler CT, Perry DA (eds), Corvallis, School of Forestry, Oregon State University, 1979, p 477–478.

    Google Scholar 

  238. Buckman HO, Brady NC: The nature and properties of soils. Toronto, Macmillan (7th edition 1969), p 246.

    Google Scholar 

  239. Stolzy LH: Soil atmosphere. The plant root and its environment Carson EW (ed), Charlottesville, University Press of Virginia, 1974, p 335–362.

    Google Scholar 

  240. Loneragan JF: The interface in relation to root function and growth. In: The soil-root interface Harley JL, Scott Russell R (eds), London, Academic Press, 1979, p 351–368.

    Google Scholar 

  241. Amoore JE: Dependence of mitosis and respiration in roots upon oxygen tension. Proc Roy Soc (Lond) B 154: 109–129, 1961.

    Article  CAS  Google Scholar 

  242. Boynton D, De Villiers JE, Reuther W: Are there different critical oxygen concentrations for the different phases of root activity? Science 88: 569–570, 1938.

    Article  PubMed  CAS  Google Scholar 

  243. Letey J, Stolzy LH: Limiting distances between root and gas phase for adequate oxygen supply. Soil Sci 103: 404–409, 1967.

    Article  Google Scholar 

  244. Loveday J: Influence of oxygen diffusion rate in (Rhizobium) nodulation of subterranean clover. Aust J Sci 26: 90–91, 1963.

    CAS  Google Scholar 

  245. Bond G: Symbiosis of leguminous plants and nodule bacteria. IV. The importance of the oxygen factor in nodule formation and function. Ann Bot 15: 95–108, 1950.

    Google Scholar 

  246. Ferguson TP, Bond G: Symbiosis of leguminous plants and nodule bacteria. V. The growth of red clover at different oxygen tensions. Ann Bot 18: 385–396, 1954.

    Google Scholar 

  247. Bond G: The oxygen relation of nitrogen fixation in root nodules. Zeitsch Allg Mikrobiol 12: 93–99, 1960.

    Google Scholar 

  248. Burris RH, Magee WE, Bach MK: The pN2 and the pO2 function for nitrogen fixation by excised soybean nodules. Ann Acad Sci Fenn 60: 190–199, 1955.

    Google Scholar 

  249. Rawsthorne S, Minchin FR, Summerfield RJ, Cookson C, Coombs J: Carbon and nitrogen metabolism in legume root nodules. Phytochem 19: 341–355, 1980.

    Article  CAS  Google Scholar 

  250. Lowe RH, Evans HJ: Carbon dioxide requirement for growth of legume nodule bacteria. Soil Sci 94: 351–356, 1962.

    Article  CAS  Google Scholar 

  251. Grobelaar N, Clarke B, Hough MC: The nodulation and nitrogen fixation of Phaseolus vulgaris L. III. The effect of CO2 and C3H4. Pl Soil, Special Volume: 215–223, 1971.

    Google Scholar 

  252. Mulder EC, van Veen WL: The influence of carbon dioxide in symbiotic nitrogen fixation. Pl Soil 13: 265–278, 1960.

    Article  CAS  Google Scholar 

  253. Stolwijk JAJ, Thimann KV: On the uptake of carbon dioxide and bicarbonate by roots and its influence on growth. Pl Physiol 32: 513–520, 1957.

    Article  CAS  Google Scholar 

  254. Bergersen FJ : Biochemistry of symbiotic nitrogen fixation in legumes. Ann Rev Pl Physiol 22: 121–140, 1971.

    Article  CAS  Google Scholar 

  255. Wheeler CT: Carbon dioxide fixation in the legume root nodule. Ann Appl Biol 481–484, 1978.

    Google Scholar 

  256. Schwinghamer EA: Genetic aspects of nodulation and dinitrogen fixation by legumes: the microsymbiont. In: A treatise on dinitrogen fixation III. Biology Hardy RWF, Silver WS (eds), New York, Wiley, 1977, p 577–622.

    Google Scholar 

  257. Brill WJ: Biochemical genetics of nitrogen fixation. Microbiol. Rev. 44: 449–467, 1980.

    PubMed  CAS  Google Scholar 

  258. Brewin NJ, Johnston AWB, Beringer JE: The genetics of Rhizobium In: Nitrogen fixation Stewart WDP, Gallon JR (eds), London, Academic Press, 1980, p 365–374.

    Google Scholar 

  259. Beringer JE, Brewin NJ, Johnston AWB: The genetic analysis of Rhizobium in relation to symbiotic nitrogen fixation. Heredity 45: 161–186, 1980.

    Article  CAS  Google Scholar 

  260. Beringer JE: Genetics of symbiotic nitrogen-fixing microorganisms. In: Current perspectives in nitrogen fixation Gibson AH, Newton WE (eds), Canberra, Aust Acad Sci, 1981, p 131–136.

    Google Scholar 

  261. Postgate JR, Cannon FC: The molecular and genetic manipulation of nitrogen fixation. Phil Trans Roy Soc B 292: 589–599, 1981.

    Article  CAS  Google Scholar 

  262. Caldwell BE, Vest HG: Genetic aspects of nodulation and dinitrogen fixation by legumes: the macrosymbiont. In: A treatise on dinitrogen fixation III. Biology Hardy RWF, Silver WS (eds), New York, Wiley, 1977, p 557–576.

    Google Scholar 

  263. Nutman PS: Genetics of symbiosis and nitrogen fixation in legumes. Proc Roy Soc B 172: 417–438, 1969.

    Article  CAS  Google Scholar 

  264. La Rue TA: Host plant genetics and enhancing symbiotic nitrogen fixation. In: Nitrogen fixation Stewart WDP, Gallon JR (eds), London, Academic Press, 1980, p 355–364.

    Google Scholar 

  265. Nutman PS: Hereditary host factors affecting nodulation and nitrogen fixation. In: Current perspectives in nitrogen fixation Gibson AH, Newton WE (eds), Canberra, Aust Acad Sci, 1981, p 194–204.

    Google Scholar 

  266. Amarger N: Selection of Rhizobium strains on their competitive ability for nodulation. Soil Biol Biochem 13: 481–486, 1981.

    Article  Google Scholar 

  267. Amarger N: Competitiveness for nodule formation between effective and ineffective strains of Rhizobium meliloti. Soil Biol Biochem 13: 475–480, 1981.

    Article  Google Scholar 

  268. Obaton M: Influence de la composition chimiques du sol sur l’utilitée de l’inoculation des graines de luzerne avec Rhizobium meliloti. Pl Soil, Special Volume, 273–285, 1971.

    Google Scholar 

  269. Nuti MP: The large plasmids of Rhizobia: current status and their involvement in the expression of symbiotic functions. In: Current perspectives in nitrogen fixation Gibson AH, Newton WE (eds), Canberra, Aust Acad Sci, 1981, p 167–168.

    Google Scholar 

  270. Dunican LK, O’Gora F, Tierney AB: Plasmid control of effectiveness in Rhizobium: transfer of nitrogen-fixing genes on a plasmid from Rhizobium trifolin to Klebsiella aerogenes In: Symbiotic nitrogen fixation in plants IBP 7, Nutman PS (ed), Cambridge, Cambridge University Press, 1976, p 77–90.

    Google Scholar 

  271. Nuti MP, Lepidi AM, Prakash RK, Schilperoot RA, Cannon FC: Evidence for nitrogen fixation (nif) genes on indigenous Rhizobium plasmids. Nature 282: 533–534, 1979.

    Article  CAS  Google Scholar 

  272. Johnston AWB, Beynon JL, Buchanan-Wollaston AV, Setchell SM, Hirsch PR, Beringer JE: High frequency transfer of nodulating ability between strains and species of Rhizobium. Nature 276: 634–636, 1978.

    Article  Google Scholar 

  273. Dénarié J, Rosenberg C, Boistard P, Truchet G, Casse-Delbart F: Plasmid control of symbiotic properties in Rhizobium meliloti In: Current perspectives in nitrogen fixation Gibson AH, Newton WE (eds), Canberra, Aust Acad Sci, 1981, p 137–141.

    Google Scholar 

  274. Rodriguez-Barrueco R, Miguel C, Canizo A: Host plant endophyte specificity in actinorhizal plants. In: Current perspectives in nitrogen fixation Gibson AH, Newton WE (eds), Canberra, Aust Acad Sci, 1981, p 476.

    Google Scholar 

  275. Baker D, Lechevalier MP, Dillon JT: Strain analysis of actinorhizal microsymbionts (Genus: Frankia) In: Current perspectives in nitrogen fixation Gibson AH, Newton WE (eds), Canberra, Aust Acad Sci, 1981, p 479.

    Google Scholar 

  276. Dawson JO, Soon-Hwa Sun: The effect of Frankia isolates from Comptonia peregrina and Alnus crispa on the growth of Alnus glutinosa, A. cordata and A. incana clones. Can J For Res, in press.

    Google Scholar 

  277. Hall RB, Maynard CA: Considerations in the genetic improvement of alder. In: Symbiotic nitrogen fixation in the management of temperate forests Gordon JC, Wheeler CT, Perry DA (eds), Corvallis, School of Forestry, Oregon State University, 1979, p 322–344.

    Google Scholar 

  278. Mejnartowicz L: Genetyka. In: Olsze - Alnus Mill Bialokok S (ed), Warsaw, Polska Akad. Nauk Inst. Dendrologii, 1980, p 201–228.

    Google Scholar 

  279. Gordon JC, Wheeler CT: Whole plant studies on photosynthesis and acetylene reduction in Alnus glutinosa. New Phytol 80: 179–186, 1978.

    Article  CAS  Google Scholar 

  280. Perinet P, Lalonde M: In vitro propagation and nodulation of the actinorhizal host plant Alnus glutinosa (L.) Gaertn. Pl. Sci. Letters 29: 9–17, 1983.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Martinus Nijhoff/Dr W. Junk Publishers, The Hague/Boston/London

About this chapter

Cite this chapter

Dixon, R.O.D., Wheeler, C.T. (1983). Biochemical, physiological and environmental aspects of symbiotic nitrogen fixation. In: Gordon, J.C., Wheeler, C.T. (eds) Biological nitrogen fixation in forest ecosystems: foundations and applications. Forestry Sciences, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6878-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6878-3_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6880-6

  • Online ISBN: 978-94-009-6878-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics