Skip to main content

Evidence on compressibility in the Earth

  • Chapter
The Earth’s Density

Abstract

The intimate connection between the incompressibility k and the density ρ, as expressed in the relation (7.15), shows that evidence involving k is very pertinent to the determination of the Earth’s density variation. An illustration has already been provided in the use of information on φ, i.e. k/ρ, derived from seismic data in applying (10.7) to estimate density gradients in some regions of the Earth. In the present chapter, a quantity of additional evidence, theoretical and experimental, involving k is brought to bear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahrens TJ, Anderson DL, and atRingwood AE (1969) Equations of state and crystal structures of high-pressure phases of shocked silicates and oxides. Rev. Geophys., 7:667–

    Article  Google Scholar 

  • Akimoto S, and Ida Y (1966) High-pressure synthesis of Mg2Si04 spinel. Earth Planet. Sci. Letters, 1:358

    Article  Google Scholar 

  • Al’tschuler LV et al (1958) Zurn. Eksp. Tear. Fiz., 36:606.

    Google Scholar 

  • Al’tschuler LV, and Kormer SB (1961) On the internal constitution of the Earth. Bull. A cad. Sci. U.S.S.R., Geophys. Ser. (English trans.), pp.18–21

    Google Scholar 

  • Bernal JD (1936) Hypothesis on 20° discontinuity. Observatory, 59:268

    Google Scholar 

  • Birch F (1939) The variation of seismic velocities within a simplified Earth model, in accordance with the theory of finite strain. Bull. Seismol. Soc.Amer., 29:463–479

    Google Scholar 

  • Birch F (1952) Elasticity and constitution of the Earth’s interior. J. Geophys. Res., 57:227–2

    Article  Google Scholar 

  • Birch F (1961) Composition of the Earth’s mantle. Geophys. J., R. Astr. Soc., 4:295–311

    Google Scholar 

  • Birch F (1963) Some geophysical applications of high-pressure research. In Solids under Pressure, McGraw-Hill, New York. pp.137–162

    Google Scholar 

  • Birch F (1972) The melting relations of iron, and temperatures in the Earth’s core. Geophys.J. R. Astr. Soc., 29:373-387

    Google Scholar 

  • Bolt BA and O’Neill ME (1965) Times and amplitudes of the phases PKiKP and PKIIKP. Geophys.J. Roy. Astr. Soc., 9:223-231

    Google Scholar 

  • Boschi E and Caputo M (1969) Equations of state at high pressure and the Earth’s interior. Riv. Nuovo Cim., 1:441–513

    Article  Google Scholar 

  • Bridgman, P.W. (1931). The Physics of High Pressure. Bell, London.

    Google Scholar 

  • Bullen KE (1936) The variation of density and the ellipticities of strata of equal density within the Earth. Mon. Not. R. Astr. Soc., Geophys. Suppl., 3:395–401

    Google Scholar 

  • Bullen KE (1940) The problem of the Earth’s density variation. Bull. Seismol. Soc. Amer., 30:235–250

    Google Scholar 

  • Bullen KE (1942) The density variation of the Earth’s central core. Bull. Seismol. Soc. Amer., 3219–29

    Google Scholar 

  • Bullen KE (1946) A hypothesis on compressibility at pressures of the order of a million atmospheres. Nature, Land., 157,405

    Google Scholar 

  • Bullen KE (1949) Compressibility-pressure hypothesis and the Earth’ interior. Mon. Not. R. Astr. Soc., Geophys. Suppl., 5:355–368

    Google Scholar 

  • Bullen KE (1950) An Earth model based on a compressibility-pressure hypothesis. Mon. Not. R. Astr. Soc., Geophys. Suppl., 6:50-59

    Google Scholar 

  • Bullen KE (1951) Theoretical amplitudes of the seismic phase PKJKP. Mon. Not. R. Astr. Soc., Geophys. Suppl., 6:163–167

    Google Scholar 

  • Bullen KE (1952) On density and compressibility at pressures up to thirty million atmospheres. Mon. Not. R. Astr. Soc., Geophys. Suppl., 6:383–401

    Google Scholar 

  • Bullen KE (1956) Seismology and the broad structure of the Earth’ interior. Phys. & Chem. oftbe Earth, 1:68-93

    Google Scholar 

  • Bullen KE (1963) An index of degree of chemical inhomogeneity in the Earth. Geophys. J., R. Astr. Soc., 7:584-592

    Google Scholar 

  • Bullen KE (1964) New evidence on rigidity in the Earth’ core. Proc. Nat. Acad. Sci., Wash., 52:38–42

    Article  Google Scholar 

  • Bullen KE (1965a)On compressibility and chemical inhomogeneity in the Earth’ core. Geophys. J., R. Astr. Soc., 9:195–202

    Google Scholar 

  • Bullen KE (1965b)Models for the density and elasticity of the Earth’ core. Geophys. J., R. Astr. Soc., 9:233-252

    Google Scholar 

  • Bullen KE (1967) Note on the coefficient fl. Geophys. J., R. Astr. Soc., 13:459

    Google Scholar 

  • Bullen KE (1968a) Compression in the Earth. Geophys. J., R. Astr. Soc., 16:31–36

    Google Scholar 

  • Bullen KE (1968b) Dependence of compressibility and compression on chemical composition in finite-strain theory. Phys. Earth Planet. Interiors, 1:297–301

    Article  Google Scholar 

  • Bullen KE (1968c) Incompressibility at the Earth’ mantle-core boundary. Proc. Nat. Acad. Sci., Wash., 60:752–757

    Article  Google Scholar 

  • Bullen KE (1968d) Empirical equations of state for the Earth’ lower mantle and core. Geophys. J., R. Astr. Soc., 16:235–238

    Google Scholar 

  • Bullen KE (1969a) Compressibility-pressure gradient and the constitution of the Earth’ outer core. Geophys. J., R. Astr. Soc., 18:73–79

    Google Scholar 

  • Higgins G and Kennedy GC (1971) The adiabatic gradient and the melting point gradient in the core of the Earth.. J.Geophys. Res., 76:1870–1878

    Article  Google Scholar 

  • Bullen KE (1969c) The interiors of the planets. Ann. Rev. Astron. Astrophys., 7:177–200

    Article  Google Scholar 

  • Bullen KE (1970a) Comparison of sources of evidence on the variation of incompressibility in the Earth’ deeper interior. Phys. Earth Planet. Interiors, 3:36–40

    Article  Google Scholar 

  • Bullen KE (1970b) Note on application of Emden’s equation to planetary interiors. Mon. Not. R. Astr. Soc., 149:51–52

    Google Scholar 

  • Bullen KE (1972) Compressibility and planetary interiors. Phys. Earth Planet. Interiors, 6:131–135

    Article  Google Scholar 

  • Bullen KE and Haddon RA (1967) Earth models based on compressibility theory. Phys. Earth Planet. Interiors, 1:1–13

    Article  Google Scholar 

  • Bullen KE and Haddon RA (1968) Corrections to three Earth models. Phys. Earth Planet. Interiors, 1:401–402

    Article  Google Scholar 

  • Bullen KE and Haddon RA (1969) Upper bound to change in incompressibility at the Earth’ inner core boundary. Geophys. J., R Astr. Soc. 17:179–183

    Google Scholar 

  • Caloi P (1961) Seismic waves from the outer and inner core. Geophys. J., R. Astr. Soc., 4:139–150

    Google Scholar 

  • Chandrasekhar S (1952) The thermal instability of a fluid sphere heated within. Phil. Mag., 7:1317–1329

    Google Scholar 

  • Cleary J (1969) The S velocity at the core-mantle boundary, from observations of diffracted S. Bull. Seismol. Soc. Amer., 59:1399–1405

    Google Scholar 

  • Cook AH (1972) The dynamical properties and internal structures of the Earth, the Moon and the planets. Proc. R. Soc. Lond. A, 328:301–336

    Article  Google Scholar 

  • Davies GF and Anderson DL (1971) Revised shock-wave equations of state for high-pressure phases of rocks and minerals. Geophys. Res., 76:2617–2627

    Article  Google Scholar 

  • Elsasser WM (1951) Quantum-theoretical densities of solids at extreme compression. Science, 113:105–107

    Article  Google Scholar 

  • Evernden JF and Clark DM (1970) Study of teleseismic P. Phys. Earth Planet. Interiors, 4:1–31

    Article  Google Scholar 

  • Feynman RP, Metropolis N and Teller E (1949) Equations of state of elements based on the generalized Fermi-Dirac theory. Phys. Rev., 75:1561–1572

    Article  Google Scholar 

  • Higgins G and Kennedy GC (1971) The adiabatic gradient and the melting point gradient in the core of the Earth.. J.Geophys. Res., 76:1870–1878

    Article  Google Scholar 

  • Jacobs JA (1954) Temperature distribution within the Earth’ core. Nature, Lond., 173:258

    Article  Google Scholar 

  • Jeffreys H (1936) Hypothesis on 20° discontinuity. Observatory, 59:268

    Google Scholar 

  • Jeffreys H (1939a) The times of P, Sand SKS and the velocities of P and S. Mon. Not. R. Astr. Soc., Geophys. Suppl., 4:498–533

    Google Scholar 

  • Jeffreys H (1939b) The times of the core waves. Mon. Not. R. Astr. Soc., Geophys. Suppl., 4:48–561, 594–615

    Google Scholar 

  • Knopoff L and MacDonald GJF (1960) An equation of state for the Earth. Geophys.J., R. Astr. Soc., 3:,68–77

    Google Scholar 

  • Knopoff L and Uffen RJ (1954). The density of compounds at high pressures and the state of the Earth’ interior.. J.Geophys. Res., 59:471–484

    Article  Google Scholar 

  • Landisman M, Sata Y. and Nafe J (1965) Free vibrations of the Earth and the properties of its deep interior regions. Part 1: Density. Geophys. J., R. Astr. Soc., 9:439–502

    Google Scholar 

  • Lubimova HA (1956) Thermal history of the Earth and its geophysical effect. Dokl. Akad. Nauk, U.S.S.R., 107:55–58.

    Google Scholar 

  • MacDonald GJF and Knopoff L (1958) The chemical composition of the outer core. Geophys. J., R. Astr. Soc., 1:284–297

    Google Scholar 

  • McQueen RG and Marsh SP (1960) Equation of state for nineteen metallic elements from shock-wave experiments to two megabars. J. App. Pbys., 31:1253–1269

    Google Scholar 

  • Melik-Gajkazan LA (1955) Akad. Nauk SSSR, Geopbys. Inst., Trudy, 26:117

    Google Scholar 

  • Ringwood AE (1958) The constitution of the mantle — I, II and III. Geochim. et Cosmocbim. Acta, 13:303–321

    Article  Google Scholar 

  • Ringwood AE (1959) On the chemical evolution and densities of the planets. Geochim. et Cosmocbim. Acta, 15:267–283

    Google Scholar 

  • Runcorn SK (1974) A physical interpretation of Bullen’s compressibilitypressure hypothesis. Proceedings of NATO Conference, Newcastle-upon-Tyne, April 1974. In course of publication.

    Google Scholar 

  • Simon LFE (1953) The melting point of iron at high pressures. Nature, Lond., 172,:746

    Article  Google Scholar 

  • Slichter LB (1966) A glimpse at the geophysical scene. Trans. Amer. Geopbys. Un., 47:346–354

    Google Scholar 

  • Stewart RM (1973) Composition and temperature of the outer core. J. Geopbys. Res., 78:2586–2597

    Article  Google Scholar 

  • Takeuchi H and Kanamori H (1966) Equations of state of matter from shock wave experiments. Geophys. Res., 71:3985–3994

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Bullen, K.E. (2002). Evidence on compressibility in the Earth. In: The Earth’s Density. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5700-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5700-8_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-5702-2

  • Online ISBN: 978-94-009-5700-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics