Skip to main content

Abstract

Recent developments in the identification, estimation and diagnostic checking of deseasonalized autoregressive moving-average (ARMA) models and periodic autoregressive (PAR) models are reviewed. These techniques are then used for fitting PAR and deseasonalized ARMA models to three specific monthly riverflow time series. The Akaike information criterion (AIC) and Bayes information criterion (BIC) suggest the PAR model provides the best fit. Split-sample simulation experiments show that the PAR models preserve the critical drought statistics of the historical flow sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Akaike, H. (1974), “A new look at the statistical model identification.” IEEE Transactions on Automatic Control AC-19, 716–723.

    Article  MathSciNet  Google Scholar 

  • Ansley, C. F. (1979), “An algorithm for the exact likelihood of a mixed autoregressive-moving average process.” Biometrika 66, 59–65.

    Article  MathSciNet  MATH  Google Scholar 

  • Askew, A. J., W. W. G. Yeh, and W. A. Hall (1974), “A comparative study of critical drought simulation.” Water Resources Research 7, 52–62.

    Article  Google Scholar 

  • Box, G. E. P., and D. R. Cox (1964), “An analysis of transformations.” Journal of the Royal Statistical Society, Series A 127, 211–252.

    Article  MathSciNet  Google Scholar 

  • Box, G. E. P., and G. Jenkins (1976), Time Series Analysis, Forecasting and Control, 2nd edition. San Francisco: Holden-Day.

    MATH  Google Scholar 

  • Box, G. E. P., and M. E. Muller (1958), “A note on the generation of random normal deviates.” Annals of Mathematical Statistics 29, 610–611.

    Article  MATH  Google Scholar 

  • Clarke, R. T. (1973), “Mathematical models in Hydrology.” Irrigation and Drainage Paper 19, Food and Agricultural Organization of the United Nations, Rome, Italy.

    Google Scholar 

  • Croley, T. E., and K. N. R. Rao (1977), “A manual for hydrologic time series deseasonalization and serial dependence reduction.” Report 199, Iowa Institute of Hydraulic Research, University of Iowa, Iowa City, Iowa.

    Google Scholar 

  • Delleur, J. W., P. C. Tao, and M. L. Karvas (1976), “An evaluation of the practicality and the complexity of some rainfall and runoff time series models.” Water Resources Research 12, 953–970.

    Article  Google Scholar 

  • Fiering, M. B., and B. B. Jackson (1971), “Synthetic streamflows.” Water Resources Monograph 1, American Geophysical Union, Washington, D. C.

    Google Scholar 

  • Fisher, R. A. (1970), Statistical Methods for Research Workers. Edinburgh, England: Oliver and Boyd.

    Google Scholar 

  • Hall, W. A., A. J. Askew, and W. W. G. Yeh (1969), “Use of the critical period in reservoir analysis,” Water Resources Research 5, 1205–1215.

    Article  Google Scholar 

  • Hipel, K. W. (1981), “Geophysical model discrimination using the Akaike information criterion.” IEEE Transactions on Automatic Control AC-26, 358–378.

    Article  Google Scholar 

  • Hipel, K. W., and A. I. McLeod (1978), “Preservation of the rescaled adjusted range, part two, simulation studies using Box-Jenkins models.” Water Resources Research 14, 509–516.

    Article  Google Scholar 

  • Hipel, K. W., and A. I. McLeod (1979), “Modelling seasonal geophysical time series using deseasonalized models.” Technical Report XM-030579, Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario.

    Google Scholar 

  • Hipel, K. W., and A. I. McLeod (1986), Time Series Modelling for Water Resources and Environmental Engineers. Amsterdam: Elsevier. In press.

    Google Scholar 

  • Hipel, K. W., A. I. McLeod, and W. C. Lennox (1977), “Advances in Box-Jenkins modelling, 1, model construction.” Water Resources Research 13, 567–575.

    Article  Google Scholar 

  • Lawrance, A. J., and N. T. Kottegoda (1977), “Stochastic modelling of riverflow time series.” Journal of the Royal Statistical Society, Series A 140, 1–47.

    Article  Google Scholar 

  • Ledolter, J., and B. Abraham (1981), “Parsimony and its importance in time series forecasting.” Technometrics 23, 411–414.

    Article  MATH  Google Scholar 

  • Ljung, G. M., and G. E. P. Box (1979), “The likelihood function of stationary autoregressive-moving average models.” Biometrika 66, 265–270.

    Article  MathSciNet  MATH  Google Scholar 

  • McClave, J. T. (1975), “Subset autoregression.” Technometrics 17, 213–220.

    Article  MathSciNet  MATH  Google Scholar 

  • McLeod, A. I. (1977), “Improved Box-Jenkins estimators.” Biometrika 64, 531–534.

    Article  MathSciNet  MATH  Google Scholar 

  • McLeod, A. I. (1978), “On the distribution of residual autocorrelations in Box-Jenkins models.” Journal of the Royal Statistical Society, Series B 40, 296–302.

    MathSciNet  MATH  Google Scholar 

  • McLeod, A. I., and K. W. Hipel (1978a), “Developments in monthly autoregressive modelling.” Technical Report 45-XM-011178, Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario.

    Google Scholar 

  • McLeod, A. I., and K. W. Hipel (1978b), “Preservation of the rescaled adjusted range, part one, a reassessment of the Hurst phenomenon.” Water Resources Research 14, 491–508.

    Article  Google Scholar 

  • McLeod, A. I., and K. W. Hipel (1978c), “Simulation procedures for Box-Jenkins models.” Water Resources Research 14, 969–975.

    Article  Google Scholar 

  • McLeod, A. I., K. W. Hipel, and W. C. Lennox (1977), “Advances in Box-Jenkins modelling, 2, applications.” Water Resources Research 13, 577–586.

    Article  Google Scholar 

  • McLeod, A. I., and W. K. Li (1983), “Diagnostic checking ARMA time series models using squared-residual autocorrelations.” Journal of Time Series Analysis 4, 269–273.

    Article  MathSciNet  MATH  Google Scholar 

  • McMahon, T. A., and R. G. Mein (1978), Reservoir Capacity and Yield. Amsterdam: Elsevier.

    Google Scholar 

  • Moss, M. E., and M. C. Bryson (1974), “Autocorrelation structure of monthly steamfiows.” Water Resources Research 10, 737–744.

    Article  Google Scholar 

  • Noakes, D. J., A. I. McLeod, and K. W. Hipel (1983), “Forecasting experiments with seasonal hydrological time series models.” Technical Report 117-XM-220283, Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario.

    Google Scholar 

  • Noakes, D. J., A. I. McLeod, and K. W. Hipel (1985), “Forecasting monthly riverflow time series.” International Journal of Forecasting 1, 179–190.

    Article  Google Scholar 

  • Pagano, M. (1978), “On periodic and multiple autoregression.” Annals of Statistics 6, 1310–1317.

    Article  MathSciNet  MATH  Google Scholar 

  • Parzen, E., and M. Pagano (1979), “An approach to modelling seasonally stationary time series.” Journal of Econometrics 9, 137–153.

    Article  MATH  Google Scholar 

  • Rao, A. R., and R. L. Kashyap (1974), “Stochastic modelling of river flows.” IEEE Transactions on Automatic Control AC-19, 874–881.

    Article  Google Scholar 

  • Sakai, H. (1982), “Circular lattice filtering using Pagano’s method.” IEEE Transactions on Acoustics, Speech and Signal Processing ASSP-30, 279–287.

    Article  Google Scholar 

  • Salas, J. D., D. C. Boes, and R. A. Smith (1982), “Estimation of ARMA models with seasonal parameters.” Water Resources Research 18, 1006–1010.

    Article  Google Scholar 

  • Salas, J. D., J. W. Delleur, V. Yevjevich, and W. L. Lane (1980), Applied Modelling of Hydrologic Time Series. Littleton, Colorado: Water Resources Publications.

    Google Scholar 

  • Schwarz, G. (1978), “Estimating the dimension of a model.” Annals of Statistics 6, 461–464.

    Article  MathSciNet  MATH  Google Scholar 

  • Sen, Z. (1978), “A mathematical model of monthly flow sequences.” Hydrological Sciences Bulletin 23, 223–229.

    Article  Google Scholar 

  • Tao, P. C., and J. W. Delleur (1976), “Seasonal and nonseasonal ARMA models in hydrology.” Journal of the Hydraulics Division, ASCE 102, 1541–1559.

    Google Scholar 

  • Thompstone, R. M. (1983), “Topics in hydrological time series modelling.” Ph.D. Thesis, Department of Systems Design Engineering, University of Waterloo, Waterloo, Ontario.

    Google Scholar 

  • Thompstone, R. M., K. W. Hipel, and A. I. McLeod (1985a), “Forecasting quarter-monthly riverflow.” Water Resources Bulletin 21, 731–741.

    Google Scholar 

  • Thompstone, R. M., K. W. Hipel, and A. I. McLeod (1985b), “Grouping of periodic autoregressive models.” In Time Series Analysis—Theory and Practice 6, ed. 0. D. Anderson, J. K. Ord and E. A. Robinson, pp. 35–49. Amsterdam: Elsevier Science.

    Google Scholar 

  • Thompstone, R. M., A. Poké, and A. Vallée (1980), “A hydrometeorological information system for water resources management.” INFOR-Canadian Journal of Operational Research and Information Processing 18, 258–274.

    Google Scholar 

  • Troutman, B. M. (1979), “Some results in periodic autoregression.” Biometrika 66, 219–228.

    Article  MathSciNet  MATH  Google Scholar 

  • Vecchia, A. V. (1985), “Periodic autoregressive-moving average (PARMA) modelling with applications to water resources.” Water Resources Bulletin 21, 721–730.

    Google Scholar 

  • Wichmann, B. A., and I. E. Hill (1982), “An efficient and portable pseudo-random number generator.” Journal of the Royal Statistical Society, Series C 31, 188–190.

    Google Scholar 

  • Yevjevich, V. M. (1972), “Structural analysis of hydrologic time series.” Hydrology Paper 56, Colorado State University, Fort Collins, Colorado.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Thompstone, R.M., Hipel, K.W., McLeod, A.I. (1987). Simulation of Monthly Hydrological Time Series. In: MacNeill, I.B., Umphrey, G.J., McLeod, A.I. (eds) Advances in the Statistical Sciences: Stochastic Hydrology. The University of Western Ontario Series in Philosophy of Science, vol 37. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4792-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4792-4_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8625-7

  • Online ISBN: 978-94-009-4792-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics