Skip to main content
  • 2021 Accesses

Abstract

Linear elastic fracture mechanics (LEFM) can be usefully applied as long as the plate zone is small compared to the crack size. This is usually the case in materials where fracture occurs at stresses appreciably below the yield stress and under conditions of plane strain. In such circumstances the fracture can be characterized by K Ic, or G Ic. When plane stress prevails the crack tip plastic zone is larger than in the case of plane strain. If fracture still takes place at stresses which arc low in comparison with the yield stress there are ways to arrive at a satisfactory rationale to handle the problem. If, however, the plastic zone is large compared to the crack size (high fracture stress and/or high crack resistance) linear elastic fracture mechanics do not apply any longer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wells, A. A., Unstable crack propagation in metals-cleavage and fast fracture, Proc. Crack propagation Symposium, Cranfield (1961) pp. 210–230.

    Google Scholar 

  2. Wells, A. A., Application of fracture mechanics at and beyond general yielding, British Welding Research Ass. Rep. M13, (1963).

    Google Scholar 

  3. Burdekin, F. M. and Stone, D. E. W., The crack opening displacement approach to fracture mechanics in yielding, J. Strain Analysis, 1 (1966) pp. 145–153.

    Article  Google Scholar 

  4. McClintock, F. A. and Irwin, G. R., Plasticity effects of fracture mechanics, ASTM STP 381, (1965) pp. 84–113.

    Google Scholar 

  5. Rice, J. R., A path independent integral and the approximate analysis of strain concentrations by notches and cracks, J. Appl. Mech., 35 (1968) pp. 379–386.

    Google Scholar 

  6. Rice, J. R. and Johnson, M. A., The role of large crack tip geometry changes in plane strain fracture, Inelastic behaviour of solids, Kanninen Ed., pp. 641–672, McGraw-Hill (1970).

    Google Scholar 

  7. Levy, N. et al., Small scale yielding near a crack in plane strain: a finite element analysis, Int. J. Fract. Mech., 7 (1971) pp. 143–156.

    Google Scholar 

  8. Sumpter, J. G. et al., Post yield analysis and fracture in notch tension pieces, 3rd ICF Conf. Munich (1973).

    Google Scholar 

  9. Rooke, D. P. and Bradshaw, F. J., A study of crack tip deformation and a derivation of fracture energy, Fracture 1969, pp. 46–57, Chapman and Hall (1969).

    Google Scholar 

  10. Parry, G. W. and Mills, R. G., Relations between crack opening displacement and hoop stress in zircalloy-2 pressure tubes containing axial defects, J. Strain Analysis, 3 (1968) pp. 159–162.

    Article  Google Scholar 

  11. Bowles, C. Q., Strain distribution and deformation at the crack tip in low cycle fatigue, Army Mat. and Mech. Res. Center, Watertown, Mass. Rept. AMMRC CR 70-23 (1970).

    Google Scholar 

  12. Robinson, J. N. and Tetelman, A. S., The critical crack-tip opening displacement and microscopic and macroscopic fracture criteria for metals, Un. Cal. Los Angeles Rep. Eng. 7360 (1973).

    Google Scholar 

  13. Broek, D. and Vlieger, H., The thickness effect in plane stress fracture toughness, Nat. Aerospace Lab. TR 74032 (1974).

    Google Scholar 

  14. Nichols, R. W. et al., The use of critical COD techniques for the selection of fracture resistant material, Proc. Symp. Fract. toughness concepts for weldable structural steel, pp. F1–F113, Chapman and Hall (1969).

    Google Scholar 

  15. Burdekin, F. M., Crack opening displacement—A review of principles and methods, Proc. Symp. Fract. toughness concepts for weldable structural steel, pp. C1–C12, Chapman and Hall (1969).

    Google Scholar 

  16. Anon., Fracture toughness testing of metallic materials, Part II. Crack opening displacement (COD) testing, NDACSS (CODA) Group (1970).

    Google Scholar 

  17. Ingham, T., Egan, G. R. and Elliott, D., The effect of geometry on the interpretation of COD test data, Conf. on Practical Applications of fracture mechanics to pressure vessel technology (1970).

    Google Scholar 

  18. Harrison, T. C., Relation between surface and defect tip measurements of COD as a function of specimen geometry, Gas Council Rept T 311 (1970).

    Google Scholar 

  19. Veerman, C. C. and Muller, T., The location of the apparent rotational axis in notched bend testing, Eng. Fracture Mechanics, 4 (1972) pp. 25–32.

    Article  Google Scholar 

  20. Kanazawa, T. et al., A study of the COD concept for brittle fracture initiation, Fracture 1969, pp. 1–14, Chapman and Hall (1969).

    Google Scholar 

  21. Knott, J. F., Effect of notch depth on the toughness of mild steel, Fracture 1969, pp. 205–218, Chapman and Hall (1969).

    Google Scholar 

  22. Smith, R. F. and Knott, J. F., COD and fibrous fracture in mild steel, Conf. on practical application of fracture mechanics to pressure vessel technology, (1971) pp. 65–75.

    Google Scholar 

  23. Fearnehough, G. D. et al., The role of stable ductile crack growth in die failure of structures, Conf. on practical application of fracture mechanics to pressure vessel technology (1971) pp. 119–128.

    Google Scholar 

  24. Anctil, A. A., Kula, E. B. and Di Cesare, E., Electric potential technique for determining slow crack growth, ASTM Proceedings, 63 (1963) pp. 799–810.

    Google Scholar 

  25. Fry, A., Strain figures (Kraftwirkungsfiguren) in ingot iron and steel as brought out by a new etching process, Stahl und Eisen, 41 (1921) pp. 1093–1097.

    Google Scholar 

  26. Srawley, J. E., Swedlow, J. L. and Roberts, E., On the sharpness of cracks compared with Wells’ COD method, Int. J. Fract. Mech., 6 (1970) pp. 441–444.

    Google Scholar 

  27. Wells, A. A. and Burdekin, F. M., Discussion to [26], Int. J. Fract. Mech., 7 (1971) pp. 233–241.

    Google Scholar 

  28. Srawley, J. E., Swedlow, J. L. and Roberts, E., Response to [27], Int. J. Fract. Mech., 7 (1971) pp. 242–246.

    Google Scholar 

  29. Wells, A. A., Crack opening displacements from elastic-plastic analysis of externally notched bars, Eng. Fracture Mech., 1 (1969) pp. 399–410.

    Article  Google Scholar 

  30. Elliott, D., Walker, E. F. and May, M. J., The determination and applicability of COD test data, Conf. practical applications of fracture mechanics to pressure vessel technology (1971).

    Google Scholar 

  31. Hahn, G. T., Sarrate, M. and Rosenfield, A. R., Criteria for crack extension in cylindrical pressure vessels, Int. J. Fract. Mech., 5 (1969) pp. 187–210.

    Google Scholar 

  32. Rice, J. R., A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks, J. Appl. Mech., 35 (1968) pp. 379–386.

    Google Scholar 

  33. Robinson, J. N., An experimental investigation of the effect of specimen type on the crack tip opening displacement and J integral fracture criteria, Int. J. of Fracture, 12 (1976) pp. 723–737.

    Google Scholar 

  34. Hutchinson, J. W., Singular behaviour at the end of a tensile crack in hardening material, J. Mech. Phys. Solids, 16, (1968) pp. 13–31.

    Article  ADS  MATH  Google Scholar 

  35. Rice, J. R. and Rosengren, G. F., Plane strain deformation near a crack tip in a power-law hardening material, J. Mech. Phys. Solids, 16, (1968) pp. 1–12.

    Article  ADS  MATH  Google Scholar 

  36. Neuber, H., Theory of stress concentration for shear-strained prismatical bodies with arbitrary non-linear stress-strain law, J. Appl. Mech., ASME Trans., 28 (1961) pp. 544–550.

    MathSciNet  MATH  Google Scholar 

  37. Carlsson, J., The one parameter characterization viewpoint in fracture mechanics. In: Advances in elasto-plastic fracture mechanics, pp. 43–44, Larsson, Ed., Appl. Science Publ. (1980).

    Google Scholar 

  38. McMeeking, R. M. and Parks, D. M., On criteria for J dominance of crack-tip fields in large scale yielding. ASTM STP 668, (1979) pp. 175–194.

    Google Scholar 

  39. Shih, C. F. and German, M. D., Requirements for one-parameter characterization of crack tip fields by the HRR singularity. General Electric TR (1978).

    Google Scholar 

  40. Hutchinson, J. W. and Paris, P. C., Stability analysis of J controlled crack growth, ASTM STP 668, (1979) pp. 37–64.

    Google Scholar 

  41. Rice, J. R., Paris, P. C. and Merkle, J. G., Some further results of J integral analysis and estimates, ASTM STP 536, (1973) pp. 231–245.

    Google Scholar 

  42. Ernst, H. A. and Paris, P. C., Techniques of analysis of load-displacement records by J integral methods. Nuclear Regulatory Comm. Rept NUREG/CR-122 (1980).

    Google Scholar 

  43. Srawley, J. E., On the relation of J I to work done per unit uncracked area: total or component due to crack. Int. J. of Fracture, 12 (1976) pp. 470–474.

    Google Scholar 

  44. Merkle, J. G. and Corten, H. T., A J integral analysis for the compact specimen considering axial force as well as bending effects. J. Pressure Vessel Techn., 96 (1974) pp. 286–292.

    Article  Google Scholar 

  45. Chipperfield, C. G., A summary and comparison of J estimation procedures. J. Testing and Evaluation, 6 (1978) pp. 253–259.

    Article  Google Scholar 

  46. Landes, J. D. and Begley, J. A., Test results from J integral studies: An attempt to establish a J Ic testing procedure. ASTM STP 560, (1974) pp. 170–186.

    Google Scholar 

  47. Landes, J. D. and Begley, J. A., Recent developments in J Ic testing, Westinghouse Scientific Paper 76-1E7-JINTF-P3 (1976).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Martinus Nijhoff Publishers, The Hague

About this chapter

Cite this chapter

Broek, D. (1982). Elastic-plastic fracture. In: Elementary engineering fracture mechanics. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4333-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4333-9_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8425-3

  • Online ISBN: 978-94-009-4333-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics