Skip to main content

Abstract

According to the elastic stress field solutions discussed in the previous chapter a stress singularity exists at the tip of an elastic crack. In practice, materials (especially metals) tend to exhibit a yield stress, above which they deform plastically. This means that there is always a region around the tip of a crack in a metal, where plastic deformation occurs, and hence a stress singularity cannot exist. The plastic region is known as the crack tip plastic zone. A rough estimate of the size of the plastic zone, whether in plane strain or plane stress, is simple to make. To start with, the considerations in this section are limited to plane stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Irwin, G. R., Fracture, Handbuch der Physik VI, pp. 551–590, Flügge Ed., Springer (1958).

    Google Scholar 

  2. Irwin, G. R., Plastic zone near a crack and fracture toughness, Proc. 7th Sagamore Conf., p. IV-63 (1960).

    Google Scholar 

  3. Dugdale, D. S., Yielding of steel sheets containing slits, J. Mech. Phys. Sol., 8 (1960) pp. 100–108.

    Article  ADS  Google Scholar 

  4. Burdekin, F. M. and Stone, D. E. W., The crack opening displacement approach to fracture mechanics in yielding materials, J. Strain Analysis, 1 (1966) pp. 145–153.

    Article  Google Scholar 

  5. Barenblatt, G. I., The mathematical theory of equilibrium of cracks in brittle fracture, Advances in Appl. Mech., 7 (1962) pp. 55–129.

    Article  MathSciNet  Google Scholar 

  6. Bilby, B. A., Còttrell, A. H. and Swinden, K. H., The spread of plastic yield from a notch, Proc. Roy. Soc. A 272, (1963) pp. 304–310.

    Article  ADS  Google Scholar 

  7. Bilby, B. A. and Swinden, K. H., Representation of plasticity at notches by linear dislocation arrays, Proc. Roy. Soc. A 285, (1965) pp. 22–30.

    Article  ADS  MATH  Google Scholar 

  8. McClintock, F. A. and Irwin, G. R., Plasticity aspects of fracture mechanics, ASTM STP 381, (1965) pp. 84–113.

    Google Scholar 

  9. Duffy, A. R. et al., Fracture design practice for pressure piping, Fracture I, pp. 159–232. Liebowitz ed., Academic Press (1969).

    Google Scholar 

  10. Rooke, D. P., Elastic yield zone round a crack tip, Royal Aircr. Est., Farnborough, Tech. Note CPM 29 (1963).

    Google Scholar 

  11. Jacobs, J. A., Relaxation methods applied to the problem of plastic flow, Phil. Mag., F 41 (1950) pp. 349–358.

    MathSciNet  Google Scholar 

  12. Stimpon, L. D. and Eaton, D. M., The extent of elastic-plastic yielding at the crack point of an externally notched plane stress tensile specimen, Aer. Res. Lab., Australia, Rept. ARL 24 (1961).

    Google Scholar 

  13. Hult, J. A. and McClintock, F. M., Elastic-plastic stress and strain distribution around sharp notches under repeated shear, IXth Int. Congr. Appl. Mech., 8 (1956) pp. 51–62.

    Google Scholar 

  14. McClintock, F. A., Ductile fracture instability in shear, J. Appl. Mech., 25 (1958) pp. 582–588.

    MATH  Google Scholar 

  15. McClintock, F. A., Discussion to fracture testing of high strength sheet materials, Mat. Res. and Standards, 1 (1961) pp. 277–279.

    Google Scholar 

  16. Tuba, I. S., A method of elastic-plastic plane stress and strain analysis, J. Strain Analysis, 1 (1966) pp. 115–122.

    Article  Google Scholar 

  17. Rice, J. R. and Rosengren, G. F., Plane strain deformation near a crack tip in a power-law hardening material, J. Mech. Phys. Sol., 16 (1968) p. 1.

    Article  ADS  MATH  Google Scholar 

  18. Bateman, D. A., Bradshaw, F. J. and Rooke, D. P., Some observations on surface deformation round cracks in stressed sheets, Roy. Aircr. Est. Farnborough TN-CPM 63 (1964).

    Google Scholar 

  19. Underwood, J. H. and Kendall, D. P., Measurement of plastic strain distributions in the region of a crack tip, Exp. Mechanics, (1969) pp. 296–304.

    Google Scholar 

  20. Hahn, G. T. and Rosenfield, A. R., Local yielding and extension of a crack under plane stress, Acta Met., 13 (1965) pp. 293–306.

    Article  Google Scholar 

  21. Hahn, G. T., Hoagland, R. G. and Rosenfield, A. R., Local yielding attending fatigue crack growth, Met. Trans., 3 (1972) pp. 1189–1196.

    Article  Google Scholar 

  22. Hahn, G. T. and Rosenfield, A. R., Plastic flow in the locale on notches and cracks in Fe-3Si steel under conditions approaching plane strain, Rept. to Ship structure Committee (1968).

    Google Scholar 

  23. Broek, D., A study on ductile fracture, Nat. Aerospace Inst. Amsterdam, Rept. TR 71021 (1971).

    Google Scholar 

  24. Dixon, J. R., Stress and strain distributions around cracks in sheet materials having various work hardening characteristics, Int. J. Fract. Mech., 1 (1965) pp. 224–243.

    Google Scholar 

  25. De Koning, A. U., Results of calculations with TRIM 6 and TRIAX 6 elastic-plastic elements, Nat. Aerospace Inst. Amsterdam, Rept. MP 73010 (1973).

    Google Scholar 

  26. Rice, J. R., The mechanics- of crack tip deformation and extension by fatigue, Brown University rept. NSF GK-286/3 (1966).

    Google Scholar 

  27. Swedlow, J. L., Williams, M. L. and Yang, W. H., Elastic-plastic stresses and strains in cracked plates, 1st ICF Conf., I, pp. 259–282 (1965).

    Google Scholar 

  28. Gerberich, W. W. and Swedlow, J. L., Plastic strains and energy density in cracked plates. Experiments, Exp. Mech., 4 (1964) pp. 335–344.

    Article  Google Scholar 

  29. Gerberich, W. W. and Swedlow, J. L., Plastic strains and energy density in cracked plates. Theory, Exp. Mech., 4 (1964) pp. 345–351.

    Article  Google Scholar 

  30. Oppel, G. U. and Hill, P. W., Strain measurements at the root of cracks and notches, Exp. Mechanics, 4 (1964) pp. 206–214.

    Article  Google Scholar 

  31. Hahn, G. T. and Rosenfield, A. R., Experimental determination of plastic constraint ahead of a sharp crack under plane-strain conditions, ASM Trans., 59 (1966) pp. 909–919.

    Google Scholar 

  32. Allen, F. C., Effect of thickness on the fracture toughness of 7075 aluminium in the T6 and T73 conditions, ASTM STP 486, (1971) pp. 16–38.

    Google Scholar 

  33. Feddersen, C. E. et al., An experimental and theoretical investigation of plane stress fracture of 2024-T351 Al-alloy, Battelle Columbus rept. (1970).

    Google Scholar 

  34. Broek, D., The residual strength of light alloy sheets containing fatigue cracks, Aerospace Proeedings 1966, pp. 811–835, McMillan (1966).

    Google Scholar 

  35. Christensen, R. H. and Denke, P. H., Crack strength and crack propagation characteristics of high strength materials. ASD-TR-61-207 (1961).

    Google Scholar 

  36. Weiss, V. and Yukawa, S., Critical appraisal of fracture mechanics, ASTM STP 381, (1965) pp. 1–29.

    Google Scholar 

  37. Bluhm, J. I., A model for the effect of thickness on fracture toughness, ASTM Proc., 61 (1961) pp. 1324–1331.

    Google Scholar 

  38. Sih, G. C. and Hartranft, R. J., Variation of strain energy release rate with plate thickness, Int. J. Fracture, 9 (1973) pp. 75–82.

    Article  Google Scholar 

  39. Anderson, W. E., Some designer oriented views on brittle fracture, Battelle Northwest rept. SA-2290 (1969).

    Google Scholar 

  40. Isherwood, D. P. and Williams, J. G., The effect of stress-strain properties on notched tensile fracture in plane stress, Eng. Fract. Mech., 2 (1970) pp. 19–35.

    Article  Google Scholar 

  41. Broek, D. and Vlieger, H., The thickness effect in plane stress fracture toughness, Nat. Aerospace Inst. Amsterdam, Rept. TR 74032 (1974).

    Google Scholar 

  42. Broek, D., Fail safe design procedures, Agard Fracture Mechanics Survey, Chapter II (1974).

    Google Scholar 

  43. Irwin, G. R., Fracture mode transition of a crack traversing a plate, J. Basic Eng., 82 (1960) pp. 417–425.

    Google Scholar 

  44. Srawley, J. E. and Brown, W. F., Fracture toughness testing methods, ASTM STP, 381 (1965) pp. 133–196.

    Google Scholar 

  45. Broek, D., The effect of sheet thickness on fracture toughness, Nat. Aerospace Inst. Amsterdam. Rept. TR-M-2160 (1966).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Martinus Nijhoff Publishers, The Hague

About this chapter

Cite this chapter

Broek, D. (1982). The crack tip plastic zone. In: Elementary engineering fracture mechanics. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4333-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4333-9_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8425-3

  • Online ISBN: 978-94-009-4333-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics