Skip to main content
  • 2030 Accesses

Abstract

The determination of the fatigue crack propagation curve is an essential part of the fracture mechanics design approach. Residual strength calculation procedures have obvious shortcomings, but the prediction of fatigue crack propagation characteristics is even less accurate, despite the vast amount of research that has been done on this subject. Yet the developments achieved during the last decade justify a moderate optimism about the possibilities of prediction techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schijve, J., Significance of fatigue cracks in micro-range and macro-range, ASTM STP 415, (1967) pp. 415–459.

    Google Scholar 

  2. Liu, H. W. and Iinno, N., A mechanical model for fatigue crack propagation, Fracture (1969), pp. 812–824, Chapman and Hall (1969).

    Google Scholar 

  3. McClintock, F. A., On the plasticity of the growth of fatigue cracks, Fracture of solids, pp. 65–102, John Wiley (1963).

    Google Scholar 

  4. Weertman, J., Rate of growth of fatigue cracks calculated from the theory of infinitesimal dislocations distributed in a plane, Proc. 1st Fract. Conf., Sendai, (1966) Vol. I, pp. 153–164.

    Google Scholar 

  5. Schijve, J., The accumulation of fatigue damage in aircraft materials and structures, AGARDograph No. 157 (1972).

    Google Scholar 

  6. Paris, P. C., The growth of fatigue cracks due to variations in load, Ph.D. Thesis, Lehigh University (1962).

    Google Scholar 

  7. Paris, P. C., Gomez, M. P. and Anderson, W. E., A rational analytic theory of fatigue, The Trend in Engineering, 13 (1961) pp. 9–14.

    Google Scholar 

  8. Broek, D., The effect of intermetallic particles on fatigue crack propagation in aluminium alloys, Fracture (1969), pp. 754–764, Chapman and Hall (1969).

    Google Scholar 

  9. Wilhem, D. P., Investigation of cyclic crack growth transitional behavior, ASTM STP 415, (1967) pp. 363–383.

    Google Scholar 

  10. Hudson, C. M., Fatigue crack propagation in several titanium and stainless steel alloys and one super alloy, NASA TN-D-2331 (1964).

    Google Scholar 

  11. Paris, P. C., Bucci, R. J., Wessel, E. T., Clark, W. G. and Mager, T. R., Extensive study of low fatigue crack growth rates in A533 and A508 steels, ASTM STP 513, (1972) pp. 141–176.

    Google Scholar 

  12. McClintock, F. A., Discussion, ASTM STP 415, (1967) pp. 170–174.

    Google Scholar 

  13. Hahn, G. T., Sarrat, H. and Rosenfield, A. R., The nature of the fatigue crack plastic zone. Air Force Conf. on Fatigue and Fracture (1969), AFFDL TR-70-144 (1970) pp. 425–450.

    Google Scholar 

  14. Schijve, J., Analysis of the fatigue phenomenon in aluminium alloys, Nat. Aerospace Inst. Amsterdam TR-M-2l22 (1964).

    Google Scholar 

  15. Pelloux, R. M. N., Mechanism of formation of ductile striations, ASM Trans. 62, (1969) pp. 281–285.

    Google Scholar 

  16. Bowles, C. Q. and Broek, D., On the formation of fatigue striations. Int. J. Fract. Mech., 8 (1972) pp. 75–85.

    Article  Google Scholar 

  17. Bates, R. C. and Clark, W. G., Fractography and fracture mechanics, ASM Trans. 62, (1969) pp. 380–388.

    Google Scholar 

  18. Pelloux, R. M. N., Review of theories and laves of fatigue crack propagation, Air Force Conf. on Fatigue and Fracture (1969). AFFDL-TR-70-144 (1970) pp. 409–416.

    Google Scholar 

  19. Broek, D. and Schijve, J., The influence of the mean stress on the propagation of fatigue cracks in aluminium alloy sheets, Nat. Aerospace Inst. Amsterdam TR-M-2111 (1963).

    Google Scholar 

  20. Erdogan, F., Crack propagation theories, NASA-CR-901 (1967).

    Google Scholar 

  21. Walker, E. K., Effects of environments and complex load history on fatigue life, ASTM STP 462, (1970) pp. 1–14.

    Google Scholar 

  22. Walker, E. K., An effective strain concept for crack propagation and fatigue with specific application to biaxial stress fatigue, Air Force Conf. on Fracture and Fatigue (1969). AFFDL-TR-70-144 (1970) pp. 225–233.

    Google Scholar 

  23. Forman, R. G., Kearney, V. E. and Engle, R. M., Numerical analysis of crack propagation in a cyclic-loaded structure. ASME Trans. J. Basic Eng. 89D, (1967) p. 459.

    Google Scholar 

  24. Schijve, J., NLR data, To be published.

    Google Scholar 

  25. Elber, W., The significance of fatigue crack closure, ASTM STP 486, (1971) pp. 230–242.

    Google Scholar 

  26. Figge, I. E. and Newman, J. C., Fatigue crack propagation in structures with simulated rivet forces, ASTM STP 415, (1967) pp. 71–93.

    Google Scholar 

  27. Hartman, A., On the effect of oxygen and water vapour on the propagation of fatigue cracks in an Al alloy, Int. J. Fracture Mech., 1 (1965) pp. 167–188.

    Google Scholar 

  28. Bradshaw, F. J. and Wheeler, C., Effect of environment and frequency on fatigue cracks in Al alloys, Int. J. Fract. Mech., 5 (1969) pp. 255–268.

    Google Scholar 

  29. Frost, N. E., The effect of environment on the propagation of fatigue cracks in mild steel, Appl. Mat. Res., 3 (1964) p. 131.

    ADS  Google Scholar 

  30. Meyn, D. A., Frequency and amplitude effects on corrosion fatigue cracks in a titanium alloy, Met. Trans., 2 (1971) pp. 853–865.

    Article  Google Scholar 

  31. Meyn, D. A., The nature of fatigue crack propagation in air and vacuum for 2024 aluminium, ASM Trans., 61 (1968) pp. 52–61.

    Google Scholar 

  32. Achter, M. R., Effect of environment on fatigue cracks, ASTM STP 415, (1967) pp. 181–204.

    Google Scholar 

  33. Wei, R. P., Some aspects of environment enhanced fatigue crack growth, Eng. Fract. Mech., 1 (1970) pp. 633–651.

    Article  Google Scholar 

  34. Hartman, A. and Schijve, J., The effects of environment and load frequency on the crack propagation law for macro fatigue cracks, Eng. Fract. Mech., 1 (1970) pp. 615–631.

    Article  Google Scholar 

  35. Schijve, J. and Broek, D., The effect of the frequency of an alternating load on the propagation of fatigue cracks, Nat. Aerospace Inst. Amsterdam TR-M-2092 (1961).

    Google Scholar 

  36. Schijve, J. et al., Fatigue crack growth in aluminium alloy sheet under flight simulation loading. Effects of design stress level and loading frequency, Nat. Aerospace Inst. Amsterdam TR 72018 (1972).

    Google Scholar 

  37. Schijve, J. and De Rijk, P., The fatigue crack propagation in 2024-T3 alclad sheet materials of seven different manufacturers, Nat. Aerospace Inst. Amsterdam TR-M-2162 (1966).

    Google Scholar 

  38. Broek, D. and Schijve, J., Fatigue crack growth; effect of sheet thickness, Aircraft Engineering, 38, 11 (1966) pp. 31–33.

    Article  Google Scholar 

  39. Donaldsen, D. R. and Anderson, W. E., Crack propagation behaviour of some airframe materials, Cranfield Symposium (1960), Vol. II, pp. 375–441.

    Google Scholar 

  40. Francis, P. H., The growth of surface microcracks in fatigue of 4340 steel, ASME Trans. J. Basic Eng., (1969) pp. 770–779.

    Google Scholar 

  41. Hall, L. R., On plane-strain cyclic flaw growth rates, Engineering Fracture Mech., 3 (1971) pp. 169–189.

    Article  Google Scholar 

  42. Van Leeuwen, H. P. and Schra, L., Heat treatment studies of Al alloy 7079 forgings. Nat. Aerospace Inst. Amsterdam TR 69058 (1969).

    Google Scholar 

  43. Van Leeuwen, H. P. et al., Heat treatment studies of Al-Zn-Mg alloy forgings of the DTD 5024 type, Nat. Aerospace Inst. Amsterdam TR 72032 (1972).

    Google Scholar 

  44. Broek, D. and Bowles, C. Q., The effect of precipitate size on crack propagation and fracture of an Al-Cu-Mg alloy, J. Inst. Metals, 99 (1971) pp. 255–257.

    Google Scholar 

  45. Lachenaud, R., Fatigue strength and crack propagation in AU 2 GN alloy as a function of temperature and frequency, in: Current Aeronautical Fatigue Problems, pp. 77–102, Schijve et al., Ed., Pergamon (1965).

    Google Scholar 

  46. James, C. A. and Schwenk, E. B., Fatigue crack growth in 304 stainless steel at elevated temperature, Met. Trans, 2 (1971) pp. 491–503.

    Article  Google Scholar 

  47. Broek, D., Residual strength and fatigue crack growth in two aluminium alloy sheets at temperatures clown to −75°C, NLR report TR 72096 (1972).

    Google Scholar 

  48. Schijve, J. and Broek, D., Crack-propagation-tests based on a gust spectrum with variable amplitude loading, Aircraft Engineering, 34 (1962) pp. 314–316.

    Article  Google Scholar 

  49. Hudson, C. M. and Hardrath, H. F., Investigation of the effects of variable amplitude loadings on fatigue crack propagation pattern, NASA-TN-D-1803 (1963).

    Google Scholar 

  50. McMillan, J. C. and Pelloux, R. M. N., Fatigue crack propagation under program and random loads, ASTM STP 415, (1967) pp. 505–535.

    Google Scholar 

  51. Hertzberg, R. W., Fatigue fracture surface appearance, ASTM STP 415, (1967) pp. 205–225.

    Google Scholar 

  52. McMillan, J. C. and Hertzberg, R. W., The application of electron fractography to fatigue studies, ASTM STP, 436 (1968) pp. 89–123.

    Google Scholar 

  53. Von Euw, E. F. J., Hertzberg, R. W. and Roberts, R., Delay effects in fatigue crack propagation, ASTM STP 513, (1972) pp. 230–259.

    Google Scholar 

  54. Corbly, D. M. and Packman, P. F., On the influence of single and multiple peak overloads on fatigue crack propagation in 7075-T6511 aluminum, Eng. Fracture Mechanics, 5 (1973) pp. 479–497.

    Article  Google Scholar 

  55. Schijve, J. and De Rijk, P., The effect of ground-to-air cycles on the fatigue crack propagation in 2024-T3 alclad sheet material, Nat. Aerospace Inst. Amsterdam TR-M-2148 (1965).

    Google Scholar 

  56. Smith, S. H., Random-loading fatigue crack growth behavior of some aluminium and titanium alloys, ASTM STP 404, (1966) p. 76.

    Google Scholar 

  57. Schijve, J., Cumulative damage problems in aircraft structures and materials, The Aeronatical Journal, 74 (1970) pp. 517–532.

    Google Scholar 

  58. Morrow, J. D., Wetzel, R. H. and Topper, T. H., Laboratory simulation of structural fatigue behaviour, ASTM STP 462, (1970) pp. 74–91.

    Google Scholar 

  59. Impellizzeri, L. F., Cumulative damage analysis in structural fatigue, ASTM STP 462, (1970) pp. 40–68.

    Google Scholar 

  60. Habibie, B. J., Eine Berechnungsmethode zum Voraussagen des Fortschritts von Rissen, Messerschmitt-Bölkow-Blohm rep. UH-03-71 (1971).

    Google Scholar 

  61. Wheeler, O. E., Spectrum loading and crack growth, ASME publ. 1971.

    Google Scholar 

  62. Willenborg, J., Engle, R. M. and Wood, H. A., A crack growth retardation model using an effective stress concept, AFFDL-TM-71-1-FBR (1971).

    Google Scholar 

  63. Bell, P. D. and Wolfman, A., Mathematical modeling of crack growth interaction effects, ASTM STP 595 (1976) pp. 157–171.

    Google Scholar 

  64. Broek, D., Leis, B. N., Similitude and anomalies in crack growth rates. Materials, Experimentation and Design in Fatigue, Sherratt and Sturgeon Ed. Westbury House (1981) pp. 126–146.

    Google Scholar 

  65. Newman, J. C., The finite element analysis of crack closure, ASTM STP 590, (1976) pp. 281–301.

    Google Scholar 

  66. Leis, B. N. and Forte, T. P., Fatigue growth of initially short cracks in notched aluminium and steel plates. To be published in ASTM-STP.

    Google Scholar 

  67. Smith, R. A. and Miller, K. J., Fatigue cracks at notches, Int. J. Mech. Sci., 19 (1977) pp. 11–22.

    Article  MATH  Google Scholar 

  68. Smith, R. A., Some aspect of fatigue crack growth from notches examined by a new approach, Proc. 3rd Int. Conf. on Pressure Vessel Tech. Tokyo (1977) Vol. 2, pp. 833–838.

    Google Scholar 

  69. El Haddad, M. H., Smith, K. N. and Topper, T. H., Fatigue life predictions of smooth and notched specimens based on fracture mechanics. In: Methods of predicting fatigue life, ASME, (1979) pp. 41–56.

    Google Scholar 

  70. Cherepanov, G. P. and Halmanov, H., On the theory of fatigue crack growth, Eng. Fracture Mech., 4 (1972) pp. 219–230.

    Article  Google Scholar 

  71. Frost, N. E. and Dixon, J. R., A theory of fatigue crack growth, Int. J. Fracture Mech., 3 (1967) pp. 301–316.

    Google Scholar 

  72. Pook, L. P. and Frost, N. E., A fatigue crack growth theory, Int. J. Fracture, 9 (1973) pp. 53–61.

    Google Scholar 

  73. Donahue, R. J., Clark, H. M., Atanmo, P., Kumble, R. and McEvily, A. J., Crack opening displacement and the rate of fatigue crack growth, Int. J. Fracture Mech., 8 (1972) pp. 209–219.

    Article  Google Scholar 

  74. Schwalbe, K. H., Approximate calculation of fatigue crack growth, Int. J. Fracture, 9 (1973) pp. 381–395.

    Google Scholar 

  75. Adams, N. J. I., Fatigue crack closure at positive stress, Eng. Fracture Mech., 4 (1972) pp. 543–554.

    Article  Google Scholar 

  76. Neumann, P., On the mechanism of crack advance in ductile materials, 3rd ICF Conference (1973), III, 233.

    Google Scholar 

  77. Hahn, G. T. and Simon, R., A review of fatigue crack growth in high strength aluminum alloys and the relevant metallurgical factors, Eng. Fracture Mech., 5 (1973) 523–540.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Martinus Nijhoff Publishers, The Hague

About this chapter

Cite this chapter

Broek, D. (1982). Fatigue crack propagation. In: Elementary engineering fracture mechanics. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4333-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4333-9_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8425-3

  • Online ISBN: 978-94-009-4333-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics