Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 235))

Abstract

The algebraic approach to quantum mechanics is used to describe the quantum properties of many-body systems, in particular when the dynamics involves long range interactions. In contrast with the short range case, in the presence of long range interactions the time evolution of essentially localized observables involves variables at infinity; this means that infinitely delocalized “classical-like” observables have to be introduced for a complete description of the system. They play a crucial rôle in the phenomenon of spontaneous symmetry breaking (generalized Goldstone’s theorem). In particular, the occurrence of an energy gap (at zero momentum) for the generalized Goldstone’s boson spectrum is related to a non-trivial “classical” motion of the variables at infinity, induced by the effective dynamics (in a factorial representation). As explicit examples we discuss the Heisenberg model in the molecular field approximation, the BCS model for superconductivity, and the electron gas in uniform background as a model of metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. For a brief account of the basic structures of QM∞, with emphasis on their interdisciplinary interest, see e.g. F. Strocchi, Elements of Quantum Mechanics of Infinite Systems, World Scientific, Singapore 1985.

    Google Scholar 

  2. I.E. Segal, Ann. Math. 48, 930 (1947).

    Article  Google Scholar 

  3. R. Haag, in Les Problèmes Mathematiques de la Théorie Quantique des Champs, Coll. Inter. CNRS, Paris 1959

    Google Scholar 

  4. R. Haag and D. Kastler, J. Math. Phys. 5, 848 (1964).

    Article  Google Scholar 

  5. O. Brattelli and D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics, Vol. I Springer 1979; Vol. II, Springer 1981.

    Google Scholar 

  6. R. Haag and D. Kastler, J. Math. Phys. 5, 848 (1964).

    Article  Google Scholar 

  7. R. Haag, N.M. Hugenholz and M. Winnink, Commun. Math. Phys. 5, 215 (1967)

    Article  Google Scholar 

  8. D.W. Robinson, ibid. 7, 337 (1968).

    Google Scholar 

  9. G.L. Sewell, Quantum Theory of Collective Phenomena, (Monographs on the Physics and Chemistry of Materials), Oxford Claredon Press 1986.

    Google Scholar 

  10. J. Swieca, “Goldstone Theorem and Related Topics”, in Cargèse Lectures Vol. 4, D. Kastler ed., Gordon and Breach 1970.

    Google Scholar 

  11. G. Morchio and F. Strocchi, Commun. Math. Phys. 99, 153 (1985)

    Article  Google Scholar 

  12. J. Math. Phys. 28, 622 (1987).

    Article  Google Scholar 

  13. G. Morchio and F. Strocchi, “Infrared Problem, Higgs Phenomenon and Long Range Interactions”, in Fundamental Problems of Gauge Field Theory, Erice 1985, G. Velo and A.S. Wightman dirs., Plenum 1986.

    Google Scholar 

  14. See e.g. S. Nakajima, Y. Toyozawa and R. Abe, The Physics of Elementary Excitations, Springer 1980.

    Google Scholar 

  15. D.A. Dubin and G.L. Sewell, J. Math. Phys. 11, 2990 (1970)

    Article  Google Scholar 

  16. G.C. Emch and H.J. Knops, J. Math. Phys. 11, 3008 (1970)

    Article  Google Scholar 

  17. M.B. Ruskai, Commun. Math. Phys. 20, 193 (1971)

    Article  Google Scholar 

  18. O. Brattelli and D.W. Robinson, Commun. Math. Phys. 50, 133 (1976)

    Article  Google Scholar 

  19. C. Radin, Commun. Math. Phys. 54, 69 (1977)

    Article  Google Scholar 

  20. H. Narnhofer, Acta Phys. Austr. 49, 207 (1978)

    Google Scholar 

  21. G.L. Sewell, Lett. Math. Phys. 6, 209 (1982).

    Article  Google Scholar 

  22. These variables have been introduced, with different motivations, by O. Landord and D. Ruelle, Commun. Math. Phys. 13, 194 (1969).

    Article  Google Scholar 

  23. R. Haag, R. Kadison and D. Kastler, Commun. Math. Phys. 16, 81 (1970).

    Article  Google Scholar 

  24. G. Morchio and F. Strocchi, J. Math. Phys. 28, 1912 (1987)

    Article  CAS  Google Scholar 

  25. G. Morchio and F. Strocchi, Commun. Math. Phys. 111, 593 (1987).

    Article  Google Scholar 

  26. G. Morchio and F. Strocchi, Ann. Phys. (N.Y.) 170, 310 (1986).

    Article  CAS  Google Scholar 

  27. J. Bardeen, L. Cooper and J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)

    Article  CAS  Google Scholar 

  28. P. Anderson, Phys. Rev. 112, 1900 (1958).

    Article  CAS  Google Scholar 

  29. C. Kittel, Quantum Theory of Solids, J. Wiley 1963, Ch. 8.

    Google Scholar 

  30. W. Thirring, Comm. Math. Phys. 7, 181 (1968)

    Article  Google Scholar 

  31. Lectures in: The Many-Body Problem, Int. School of Physics, Mallorca, 1969, Plenum 1969, and references therein.

    Google Scholar 

  32. O. Brattelli and D.W. Robinson, Operator Algebras and Quantum Statistical Mechancis, Vol. II, Springer 1981, Ch. 6.

    Google Scholar 

  33. J.L. Van Hemmen, Fortsh. d. Phys. 26, 397 (1978).

    Article  Google Scholar 

  34. G. Morchio, to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Strocchi, F. (1988). Long Range Dynamics and Spontaneous Symmetry Breaking in Many-Body Systems. In: Amann, A., Cederbaum, L.S., Gans, W. (eds) Fractals, Quasicrystals, Chaos, Knots and Algebraic Quantum Mechanics. NATO ASI Series, vol 235. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3005-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3005-6_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7850-4

  • Online ISBN: 978-94-009-3005-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics