Skip to main content

Fouling by Aqueous Suspensions of Kaolin and Magnetite: Hydrodynamic and Surface Phenomena Effects

  • Chapter
Fouling Science and Technology

Part of the book series: NATO ASI Series ((NSSE,volume 145))

Abstract

When a suspension flows in contact with solid surfaces, the particles it carries can be transported to the walls and, through a process of adhesion form a more or less stable deposit. The basic phenomena of particulate fouling include these two processes, together with the simultaneous removal of the deposited particles. Knowledge of the mechanisms involved and also of their mutual interference is essential to the qualitative as well as quantitative characterization of different fouling situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Melo, L.F. and J.D. Pinheiro, “Particulate fouling: controlling processes and deposit strucutre”, 8th Intern. Heat Transfer Conf., Vol. 6, Paper HX-16,2781–2786, S. Francisco, USA, 1986.

    Google Scholar 

  2. Kern, D. and R. Seaton, “A theoretical analysis of thermal surface fouling”, Brit. Chem. Engin., 4(5), 258–262, 1959.

    Google Scholar 

  3. Pinheiro, J.D., “Fouling of heat transfer surfaces”, in “Heat exchangers; Thermal-Hydraulic Fundamentals and Design”, Ed. by Kakaç, Bergles and Mayinger, 1013–1033, McGraw-Hill, 1981.

    Google Scholar 

  4. Pinheiro, J.D., “Fouling of heat exchangers — discussion of a model”, Intern. Semin. Advanc. in Heat Exchangers, Intern. Center of Heat and Mass Transfer, Dubrovnik, Yoguslavia, 1981.

    Google Scholar 

  5. Taborek, J., Aoki, T., Ritter, R.B. Palen, J.W. and J.G. Knudsen, “Fouling the major unresolved problem in heat transfer”, Chem. Eng. Progr., 68(2) 59–67, 1972.

    CAS  Google Scholar 

  6. Watkinson, A.P. and N. Epstein, “Gas oil fouling in a sensible heat ex- changer”, Chem. Eng. Progr. Sump. Ser., 65(92), 84–90, 1969.

    CAS  Google Scholar 

  7. Crittenden, B. and S.T. Kolackzkowski, “Energy savings through accurate prediction of heat transfer fouling resistance”, in “Energy for industry’ Ed. by O’Callaghan, 257–260, Pergamon, Oxford, 1979.

    Google Scholar 

  8. Melo, L. and J.D. Pinheiro, “Hydrodynamic effects on particulate fouling”, I. Chem. Engrs. Symp. Ser., No. 86. Vol.1, 381–390, 1984.

    Google Scholar 

  9. Melo, L. and J.D. Pinheiro, “Particle transport in fouling caused by kaolin-water suspensions on copper tubes”, to be published in Can. J. Chem. Eng., Vol. 65, Dec. 1987.

    Google Scholar 

  10. Watkinson, A.P., Louis, L. and R. Brent, “Scaling of heat exchanger tubes”, Can. J. Chem. Eng., 52, 558–562, 1974.

    Article  CAS  Google Scholar 

  11. Watkinson, A.P. and O. Martinez, “Scaling of heat exchanger tubes by calcium carbonate”, J. Heat Transfer, 504–508, 1975.

    Google Scholar 

  12. Wood, N.B., “A simple method for the calculation of turbulent deposition to smooth and rough surfaces”, J. Aerosol Sci., 12(3), 275–290, 1981.

    Article  CAS  Google Scholar 

  13. Davies, C.N., “Deposition of aerosols from turbulent flow through pipes” Proc. Roy. Soc. London, Ser. A, 289, 235–246, 1966.

    Article  Google Scholar 

  14. Davies, C.N., “Brownian deposition of aerosol particles from turbulent flow through pipes”, Proc. Roy. Soc. London, Ser. A., 290, 557–562,1966.

    Article  CAS  Google Scholar 

  15. Shaw, D.J., “Introd. to Colloid and Surface Chemistry”, Butterworths, London, 1980.

    Google Scholar 

  16. Visser, J., “The adhesion of colloidal particles to a planar surface in aqueous solutions”, Ph.D. Thesis, London, 1973.

    Google Scholar 

  17. Visser, J., “The adhesion of colloidal polystyrene particles to cellophane as a function of pH and ionic strength”, J. Coll. Interf.Sci. 55(3), 664–667, 1976.

    Article  CAS  Google Scholar 

  18. Visser, J., “Adhesion and removal of particles — I and II”, in “Fouling Science and Technology”, Ed. by Melo, Bott and Bernardo, Kluwer Academic Publishers, 1988.

    Google Scholar 

  19. Barrow, G.M., “Physical Chemistry”, 2nd Ed., McGraw-Hill, 1966.

    Google Scholar 

  20. Hogg, R., Healy, T.W. and D.W. Fuerstenau, “Mutual coagulation of colloidal dispersions”, Transf. Faraday Soc., 62, 1638–1651,1966.

    Article  CAS  Google Scholar 

  21. Ruckenstein, E. and D.G. Kalthod, “Role of hydrodynamics and physical interactions in the absorption and desorption of hydrosols or globular proteins”, in “Fundam. and Appl, of Surf. Phenom. Assoc, with Fouling and Cleaning in Food Processing”, 115–147, Univ. Lund, Sweden, 1981.

    Google Scholar 

  22. Ruckenstein, E. and D. Prieve, “Absorption and desorption of particles and their chromatographic separation”, AICHE J., 22(2), 276–283, 1976.

    Article  CAS  Google Scholar 

  23. Schubert, H., “Particle adhesion to solid surfaces”, in “Fundam. and Appl. of Surf. Phenom. Assoc, with Fouling and Cleaning in Food Processing”, 57–75, Univ. Lund, Sweden, 1981.

    Google Scholar 

  24. Rajagopalan, R. and J.S. Kim, “Adsorption of brownian particles in the presence of potential barriers: effect of different modes of double—layer interaction”, J. Coll. Interf. Sci., 83(2), 428–448, 1981.

    Article  CAS  Google Scholar 

  25. Prieve, D. and E. Ruckenstein, “Double-layer interaction between dissimilar ionizable surfaces and its effect on the rate of deposition”, J. Coll. Interf. Sci., 63(2), 317–329, 1978.

    Article  CAS  Google Scholar 

  26. Wendt, F., “Turbulent Stromungen zwischen zwei rotierenden konaxialen Zylindern”, ing.-Arch., 4, 577–595, 1933.

    Article  Google Scholar 

  27. Van den Tempel, M., “Interaction forces between condensed bodies in contact”, Adv. Coll. Interf. Sci., 3, 137–159,

    Google Scholar 

  28. Grim, R.E., “Clay Mineralogy”, 2nd Ed., McGraw-Hill, 1968.

    Google Scholar 

  29. Norrish, K., “The swelling of montmorillonite”, Disc. Faraday Soc., 18, 120–134, 1954.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Melo, L., Pinheiro, J.D. (1988). Fouling by Aqueous Suspensions of Kaolin and Magnetite: Hydrodynamic and Surface Phenomena Effects. In: Melo, L.F., Bott, T.R., Bernardo, C.A. (eds) Fouling Science and Technology. NATO ASI Series, vol 145. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2813-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2813-8_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7766-8

  • Online ISBN: 978-94-009-2813-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics