Skip to main content

Fundamentals of Condensation

  • Chapter
Two-Phase Flow Heat Exchangers

Part of the book series: NATO ASI Series ((NSSE,volume 143))

Abstract

The fundamentals of condensation heat transfer for a pure vapor are reviewed. Calculational methods for the heat transfer coefficient and the pressure drop are presented for a wide variety of surface geometries and flow configurations, including shell-side condensation, in-tube condensation and direct-contact condensation. Enhancement techniques, including the fundamentals of dropwise condensation, are briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Takeyama, T. and Shimizu, S., On the Transition of Dropwise — Film Condensation, Proc. 5th Int. Heat Transfer Conf., Tokyo, vol. 3, pp. 274–278, 1974.

    Google Scholar 

  2. Tanasawa, I. and Utaka, Y., Measurement of Condensation Curves for Dropwise Condensation of Steam at Atmospheric Pressure, J. Heat Transfer, vol. 105, pp. 633–638, 1983.

    Article  Google Scholar 

  3. Kumagai, S., Yamauchi, A., Fukushima, H., and Takeyama, T., Condensation Heat Transfer on Various Dropwise-Filmwise Coexisting Surfaces, Proc. 198 7 ASME-JSME Thermal Eng. Conf., Honolulu, vol. 4, pp. 409–415, 1987.

    Google Scholar 

  4. Jensen, M. K., Condensation with Noncondensables and in Multicomponent Mixtures, NATO ASI on Thermal-Hydraulic Fundamentals and Design of Two-Phase Flow Heat Exchangers, Povoa de Varzim, Portugal, 1987.

    Google Scholar 

  5. Schrage, R. W., A Theoretical Study of Interphase Mass Transfer, Columbia University Press, New York, 1953.

    Google Scholar 

  6. Mills, A. F. and Seban, R. A., The Condensation Coefficient of Water, Int. J. Heat Mass Transfer, vol. 10, p. 1815, 1967.

    Article  Google Scholar 

  7. Wilcox, S. J. and Rohsenow, W. M. Film Condensation using Copper Condensing Block for Precise Wall Temperature Measurement, J. Heat Transfer, vol. 92, p. 359, 1970.

    Article  Google Scholar 

  8. Sakhuja, R., Effect of Superheat on Film Condensation of Potassium, Ph. D. Thesis, Massachusetts Institute of Technology, Cambridge, Mass., 1970.

    Google Scholar 

  9. Butterworth, D., Condensers: Basic Heat Transfer and Fluid Flow, in Heat Exchangers: Thermal-hydraulic Fundamentals and Design, eds. S. Kakac, A. E. Bergles and F. Mayinger, pp. 289–313, Hemisphere Publishing Corp., New York, 1981.

    Google Scholar 

  10. Merte, H., Condensation Heat Transfer, in Advances in Heat Transfer, eds. T. F. Irvine and J. P. Hartnett, vol. 9, pp. 181–272, Academic Press, New York, 1973.

    Google Scholar 

  11. Rohsenow, W. M., Condensation, in Hdbk. of Heat Transfer Fund., eds. W. M. Rohsenow, J. P. Hartnett and E. N. Ganic, 2nd ed., Ch. 11, pp. 1–50, McGraw-Hill, New York, 1985.

    Google Scholar 

  12. Butterworth, D., Film Condensation of Pure Vapor, in Heat Exchanger Design Hdbk, ed. E. U. Schlünder, vol. 2, 2.6.2 Hemisphere Publishing Corp., New York, 1983.

    Google Scholar 

  13. Bell, K. J. and Panchal, C. B., Condensation, Proc. 6th Int. Heat Transfer Conf., Toronto, vol. 6, pp. 361–375, 1978.

    Google Scholar 

  14. Nusselt, W., The Condensation of Steam on Cooled Surfaces, Z. d. Ver. Deut. Ing, vol. 60, pp. 541–546 and 569–575, 1916 (Translated into English by D. Fullarton, Chem. Engr. Funds., vol. 1, no. 2, pp. 6–19, 1982.)

    Google Scholar 

  15. Mayhew, Y., Laminar Film Condensation on a Plane, Isothermal Surface, private communcation, 1986.

    Google Scholar 

  16. Kodali, S. and Merte, H., Film Condensation Heat Transfer on a Vertical Surface at High Gravity, ASME Winter Annual Mtg., Phoenix, Paper No. 82-WA/HT-26, 1982.

    Google Scholar 

  17. Rohsenow, W. M., Heat Transfer and Temperature Distribution in Laminar Film Condensation, Trans. ASME, vol. 78, pp. 1645–1648, 1956.

    Google Scholar 

  18. Churchill, S. W., Laminar Film Condensation, Int. J. Heat Mass Transfer, vol. 29, pp. 1219–1226, 1986.

    Article  MATH  Google Scholar 

  19. Sparrow, E. M. and Gregg, J. L., A Boundary Layer Treatment of Laminar Film Condensation, J. Heat Transfer, vol. 81, pp. 13–18, 1959.

    Google Scholar 

  20. Koh, J.C.Y., Sparrow, E. M. and Hartnett, J. P., The Two Phase Boundary Layer in Laminar Film Condensation, Int. J. Heat Mass Transfer, vol. 2, pp. 69–82, 1961.

    Article  Google Scholar 

  21. di Marzo, M., Laminar Film Condensation — A Mathematical Test Case, Heat and Technology, vol. 4, nos. 3–4, pp. 37–48, 1986.

    Google Scholar 

  22. Marschall, E. and Lee, C. Y., Stability Characteristics of Condensate Films, Wärme und Stoffübertragung, vol. 1, pp. 32–37, 1973.

    Article  Google Scholar 

  23. Kutateladze, S. S., Fundamentals of Heat Transfer, ed. R. D. Cess, pp. 307–308, Academic Press, 1963.

    Google Scholar 

  24. Kirkbride, C. G., Heat Transfer by Condensing Vapor on Vertical Tubes, Trans. AIChE, vol. 30, pp 170–186, 1934.

    Google Scholar 

  25. Colburn, A. P., Heat Transfer by Condensing Vapor, Trans. AIChE, vol. 30, pp. 187–193, 1934.

    Google Scholar 

  26. Seban, R. A., Remarks on Film Condensation with Turbulent Flow, Trans. ASME, vol. 76, pp. 299–303, 1954.

    Google Scholar 

  27. Rohsenow, W. M., Webber, J. H. and Ling, A. T., Effect of Vapor Velocity on Laminar and Turbulent Film Condensation, Trans. ASME, vol. 78, pp. 1637–1643, 1956.

    Google Scholar 

  28. Blangetti, F. and Schlunder, E. U., Local Heat Transfer Coefficients on Condensation in a Vertical Tube, Proc. 6th Int. Heat Transfer Conf., Toronto, vol. 2, pp. 437–442, 1978.

    Google Scholar 

  29. Blangetti, F. and Schlunder, E. U., Local Heat Transfer Coefficients in Film Condensation at High Prandtl Numbers, Condensation Heat Transfer, eds. P. J. Marto and P. G. Kroeger, pp. 17–25, ASME, New York, 1979.

    Google Scholar 

  30. Uehara, H., Kusuda, H., Nakaoka, T. and Yamada, M., Filmwise Condensation for Turbulent Flow on a Vertical Plate, Heat Transfer — Japanese Research, vol. 12, no. 2, pp. 85–93, 1983.

    Google Scholar 

  31. Nakayama, A. and Koyama, H., An Integral Treatment of Laminar and Turbulent Film Condensation on Bodies of Arbitrary Geometrical Configuration, J. Heat Transfer, vol. 107, pp. 417–423, 1985.

    Article  Google Scholar 

  32. Labuntsov, D. A., Heat Transfer in Film Condensation of Pure Steam on Vertical Surfaces and Horizontal Tubes, Teploenergetika, vol. 4, no. 7, pp. 72–80, 1957.

    Google Scholar 

  33. Nimmo, B. G., and Leppert, G., Laminar Film Condensation on a Finite Horizontal Surface, Proc. 4th Int. Heat Transfer Conf., Paris, vol. 6, pp. Cs 2.2, 1970.

    Google Scholar 

  34. Leppert, G. and Nimmo, B. G., Laminar Film Condensation on Surfaces Normal to Body or Inertial Forces, J. Heat Transfer, vol. 90, pp. 178–179, 1968.

    Google Scholar 

  35. Prasad, V. and Jaluria, Y., Transient Film Condensation on a Finite Horizontal Plate, Chem. Eng. Commun., vol. 13, pp. 327–342, 1982.

    Article  Google Scholar 

  36. Gerstmann, J. and Griffith, P., Laminar Film Condensation on the Underside of Horizontal and Inclined Surfaces, Int. J. Heat Mass Transfer, vol. 10, pp. 567–580, 1967.

    Article  Google Scholar 

  37. Yanadori, M., Kijukata, K., Mori, Y. and Uchida, M., Fundamental Study of Laminar Film Condensation Heat Transfer on a Downward Horizontal Surface, Int. J. Heat Mass Transfer, vol. 28, pp. 1937–1944, 1985.

    Article  Google Scholar 

  38. Dhir, V. and Lienhard, J., Laminar Film Condensation on Plane and Axisymmetric Bodies in Nonuniform Gravity, J. Heat Transfer, vol. 91, pp. 97–100, 1971.

    Article  Google Scholar 

  39. Dhir, V. and Lienhard, J., Similar Solutions for Film Condensation with Variable Gravity and Body Shape, J. Heat Transfer, vol. 93, pp. 483–486, 1973.

    Article  Google Scholar 

  40. Krane, R. J. and Haines, J. R., Some Optimal Body Shapes for Laminar Film Condensation, ASME Winter Annual Mtg., Miami, Paper No. 85-WA/HT-42, 1985.

    Google Scholar 

  41. Abramowitz, M., Tables of the Functions ∫ sin1/3x dx and 4/3 sin-4/3 φ ∫ sin1/3x dx, J. Research National Bureau of Stds., vol. 47, pp. 288–290,1951.

    MathSciNet  Google Scholar 

  42. Hassan, K.-E. and Jakob, M., Laminar Film Condensation of Pure Saturated Vapors on Inclined Circular Cylinders, J. Heat Transfer, vol. 80, pp. 887–894, 1958.

    Google Scholar 

  43. Selin, G., Heat Transfer by Condensing Pure Vapors Outside Incl ined Tubes, Int. Devel. Heat Transfer, Part 2, pp. 279–289, ASME, New York, 1961.

    Google Scholar 

  44. Karimi, A., Laminar Film Condensation on Helical Reflux Condensers and Related Configurations, Int. J. Heat Mass Transfer, vol. 20, pp. 1137–1144, 1977.

    Article  Google Scholar 

  45. Shekriladze, I. G. and Gomelauri, V. I., Theoretical Study of Laminar Film Condensation of Flowing Vapor, Int. J. Heat Mass Transfer, vol. 9, pp. 581–591, 1966.

    Article  Google Scholar 

  46. Lee, W. C. and Rose, J. W., Forced Convection Film Condensation on a Horizontal Tube with and without Non-Condensing Gases, Int. J. Heat Mass Transfer, vol. 27, pp. 519–528, 1984.

    Article  Google Scholar 

  47. Fujii, T., Uehara, H., and Kurata, C, Laminar Filmwise Condensation of Flowing Vapor on a Horizontal Cylinder, Int. J. Heat Mass Transfer, vol. 15, pp. 235–246, 1972.

    Article  Google Scholar 

  48. Kern, D. Q., Mathematical Development of Loading in Horizontal Condensers, AIChE J., vol. 4, pp. 157–160, 1958.

    Article  Google Scholar 

  49. Short, B. E. and Brown, H. E., Condensation of Vapors in Vertical Banks of Horizontal Tubes, Inst. Mech Eng. Proc. General Discussion Heat Transfer, pp. 27–31, 1951.

    Google Scholar 

  50. Butterworth, D., Inundation without Vapor Shear, in Power Condenser Heat Transfer Technology, eds. P. J. Marto and R. H. Nunn, pp. 271–277, Hemisphere, New York, 1981.

    Google Scholar 

  51. Eissenberg, D. M., An Investigation of the Variables Affecting Steam Condensation on the Outside of a Horizontal Tube Bundle, Ph.D. Thesis, Univ. of Tennessee, Knoxville, December, 1972.

    Google Scholar 

  52. Brickell, G. M., Potential Problem Areas in Simulating Condenser Performance, in Power Condenser Heat Transfer Technology, eds. P. J. Marto and R. H. Nunn, pp. 51–61, Hemishpere, New York, 1981.

    Google Scholar 

  53. Fujii, T., Condensation in Tube Banks, in Condensers: Theory and Practice, I. Chem. E. Symp, Series, No. 75, pp. 3–22, Pergamon Press, London, 1983.

    Google Scholar 

  54. Fujii, T., Importance of Vapor Flow in Condensers, Proc. 1987 ASME-JSME Thermal Engineering Joint Conf., Honolulu, 1987.

    Google Scholar 

  55. Shklover, G. G. and Buevich, A. V., Investigation of Steam Condensation in an Inclined Bundle of Tubes, Thermal Eng. vol. 25, no. 6, pp. 49–52, 1978.

    Google Scholar 

  56. Nobbs, D. W. and Mayhew, Y. R., Effect of Downward Vapor Velocity and Inundation on Condensation Rates on Horizontal Tube Banks, Steam Turbine Condensers, NEL Report No. 619, pp. 39–52, 1976.

    Google Scholar 

  57. Kutateladze, S. S., Gogonin, N. I., Dorokhov, A. R., and Sosunov, V. I., Film Condensation of Flowing Vapor on a Bundle of Plain Horizontal Tubes, Thermal Eng., vol. 26, pp. 270–273, 1979.

    Google Scholar 

  58. Fujii, T., Vapor Shear and Condensate Inundation: An Overview, in Power Condenser Heat Transfer Technology, eds. P. J. Marto and R. H. Nunn, pp. 193–223, Hemisphere, New York, 1981.

    Google Scholar 

  59. Fujii, T., Uehara, H., Hirata, K., and Oda, K., Heat Transfer and Flow Resistance in Condensation of Low Pressure Steam Flowing through Tube Banks, Int. J. Heat Mass Transfer, vol. 15, pp. 247–260, 1972.

    Article  Google Scholar 

  60. Cavallini, A., Frizzerin, S. and Rossetto, L., Condensation of R-11 Vapor Flowing Downward Outside a Horizontal Tube Bundle, Proc. 8th Int. Heat Transfer Conf., San Francisco, vol. 4, pp. 1707–1712, 1986.

    Google Scholar 

  61. Butterworth, D., Developments in the Design of Shell and Tube Condensers, ASME Winter Annual Mtg., Atlanta, ASME Preprint 77-WA/HT-24, 1977.

    Google Scholar 

  62. McNaught, J. M., Two-Phase Forced Convection Heat Transfer during Condensation on Horizontal Tube Bundles, Proc. 7th Int. Heat Transfer Conf., Munich, vol. 5, pp. 125–131, 1982.

    Google Scholar 

  63. Nobbs, D. W., The Effect of Downward Vapor Velocity and Inundation on the Condensation Rates on Horizontal Tubes and Tube Banks, Ph.D. Thesis, Univ. of Bristol, Bristol, England, April, 1975.

    Google Scholar 

  64. Fujii, T. and Oda, K., Correlation Equation of Heat Transfer Coefficient for Condensate Inundaton in Tube Bundles, Trans. JSME, vol. 52, pp. 822–826, 1986.

    Article  Google Scholar 

  65. Marto, P. J., Heat Transfer and Two-Phase Flow During Shell-Side Condensation, Heat Transfer Engr., vol. 5, nos. 1–2, pp. 31–61, 1984.

    Article  Google Scholar 

  66. Hopkins, H. L., Loughhead, J. and Monks, C. J., A Computerized Analysis of Power Condenser Performance Based Upon An Investigation of Condensation, in Condensers: Theory and Practice, I, Chem. E. Symp. Series, No. 75, pp. 152–170, Pergamon Press, London, 1983.

    Google Scholar 

  67. Shida, H., Kuragaska, M., and Adachi, T., On the Numerical Analysis Method of Flow and Heat Transfer in Condensers, Proc. 7th Int. Heat Transfer Conf., Munich, vol. 6, pp. 347–352, 1982.

    Google Scholar 

  68. Al-Sanea, S., Rhodes, N., Tatchell, D. G., and Wilkinson, T. S., A Computer Model for Detailed Calculation of the Flow in Power Station Condensers, in Condensers: Theory and Practice, I. Chem E. Symp. Series, No. 75, pp. 70–88, Pergamon Press, London, 1983.

    Google Scholar 

  69. Caremoli, C, Numerical Computation of Steam Flow in Power Plant Condensers, in Condensers: Theory and Practice, I. Chem. E. Symp. Series, No. 75, pp. 89–96, Pergamon Press, London, 1983.

    Google Scholar 

  70. Beckett, G., Davidson, B. J. and Ferrison, J. A., The Use of Computer Programs to Improve Condenser Performance, in Condensers: Theory and Practice, I. Chem. E. Symp. Series, No. 75, pp. 97–110, Pergamon Press, London, 1983.

    Google Scholar 

  71. Zinemanas, D., Hasson, D. and Kehat, E., Simulation of Heat Exchangers with Change of Phase, Computers & Chem. Eng., vol. 8, pp. 367–375, 1984.

    Article  Google Scholar 

  72. Breber, G., In-tube Condensation, in Heat Transfer Equipment Design, eds. R. K. Shah, E. C. Subbarao, and R. A. Mashelkar, Hemisphere Publishing Corp., New York, 1987.

    Google Scholar 

  73. Soliman, H. M. and Azer, N. Z., Visual Studies of Flow Patterns During Condensation Inside Horizontal Tubes, Proc. 5th Int. Heat Transfer Conf., Tokyo, vol. 3, pp. 241–245, 1974.

    Google Scholar 

  74. Rahman, M. M., Fathi, A. M. and Soliman, H. M., Flow Pattern Boundaries During Condensation: New Experimental Data, Canadian J. Chem. Eng., vol. 63, pp. 547–552, 1985.

    Article  Google Scholar 

  75. Soliman, H. M., Flow Pattern Transitions During Horizontal In-Tube Condensation, in Encycl. of Fluid Mech., Ch. 12, Gulf Publishing Co., Houston, 1986.

    Google Scholar 

  76. Breber, G., Palen, J. W., and Taborek, J., Prediction of Horizontal Tubeside Condensation of Pure Components Using Flow Regime Criteria, J. Heat Transfer, vol. 102, pp. 471–476, 1980.

    Article  Google Scholar 

  77. Tandon, T. N., Varma, H. K. and Gupta, C. P., A New Flow Regime Map for Condenation Inside Horizontal Tubes, J. Heat Transfer, vol. 104, pp. 763–768, 1982.

    Article  Google Scholar 

  78. Owen, R. G. and Lee, W. C, A Review of Some Recent Developments in Condensation Theory, in Condensers: Theory and Practice, I. Chem. E. Symp. Series, No. 75, pp. 261–308, Pergamon Press, London, 1983.

    Google Scholar 

  79. Soliman, H. M., The Mist-Annular Transition During Condensation and its Influence on the Heat Transfer Mechanism, Int. J. Multiphase Flow, vol. 12, no. 2, pp. 277–288, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  80. Nishiyama, E., Liquid Film Distribution of Vapor Condensation in Horizontal Tubes, Bull. JSME, vol. 24, no. 192, pp. 965–972, 1981.

    Article  Google Scholar 

  81. Jaster, H., and Kosky, P. G., Condensation Heat Transfer in a Mixed Flow Regime, Int. J. Heat Mass Transfer, vol. 19, pp. 95–99, 1976.

    Article  Google Scholar 

  82. Mochizuki, S. and Shiratori, T., Condensation Heat Transfer within a Circular Tube under Centrifugal Acceleration Field J. Heat Transfer, vol. 102. pp. 158–162, 1980.

    Article  Google Scholar 

  83. Royal, J., Augmentation of Horizontal In-Tube Condensation of Steam, Ph.D. Thesis, Iowa State University, Ames, Iowa, 1975.

    Google Scholar 

  84. Akers, W. W., Deans, H. A. and Crosser, O. K., Condensing Heat Transfer Within Horizontal Tubes, Chem. Eng. Prog. Symp. Series, vol. 55, pp. 171–176, 1953.

    Google Scholar 

  85. Boyko, L. D. and Kruzhilin, G. N., Heat Transfer and Hydraulic Resistance During Condensation of Steam in a Horizontal Tube and in a Bundle of Tubes, Int. J. Heat Mass Transfer, vol. 10, pp. 361–373, 1967.

    Article  Google Scholar 

  86. Cavallini, A. and Zecchin, R., Proc. 13th Int. Congress Refrigeration, Washington, D.C., 1971.

    Google Scholar 

  87. Shah, M. M., A General Correlation for Heat Transfer During Film Condensation Inside Pipes, Int. J. Heat Mass Transfer, vol. 22, pp. 547–556, 1979.

    Article  Google Scholar 

  88. Kosky, P. G., and Staub, F. W., Local Condensing Heat Transfer Coefficients in the Annular Flow Regime, AIChE J., vol. 17, pp. 1037–1043, 1971.

    Article  Google Scholar 

  89. Mueller, A. C., Condensers — Heat Transfer, in Heat Exchanger Design Handbook, ed. E. U. Schlünder, 3.4.6, Hemisphere Publishing Corp., New York, 1983.

    Google Scholar 

  90. Traviss, D. P., Rohsenow, W. M. and Baron, A. B., Forced Convection Condensation inside Tubes: A Heat Transfer Equation for Condenser Design, ASHRAE Trans., vol. 79, Part I, pp. 157–165, 1972.

    Google Scholar 

  91. Bae, S., Maulbetsch, J. S. and Rohsenow, W. M., Refrigerant Forced — Convection Condensation Inside Horizontal Tubes, ASHRAE Trans., vol. 77, Part II, pp. 104–116, 1971.

    Google Scholar 

  92. Wallis, G. B., Flooding Velocities for Air and Water in Vertical Tubes, UKAEA Report No. AEEW-R123, 1961.

    Google Scholar 

  93. Semiat, R., Sideman, S. and Moalern-Maron, D., Turbulent Film Evaporation on and Condensation in Horizontal Elliptical Conduits, Proc. 6th Int. Heat Transfer Conf., Toronto, vol. 4, pp. 361–366, 1978.

    Google Scholar 

  94. Roth, J. E., Wärmeübertragung bei der Kondensation in geneigten ovalen Rohren, Ph.D. Thesis, Hochschule der Bundeswehr, Hamburg, 1984.

    Google Scholar 

  95. Haseler, L., Condensation of Nitrogen in Brazed Aluminum Plate-Fin Heat Exchangers, 19th National Heat Transfer Conf., Orlando, ASME Paper No. 80-HT-57, 1980.

    Google Scholar 

  96. Robertson, J. M., Review of Boiling, Condensing and other Aspects of Two-Phase Flow in Plate-Fin Heat Exchangers, in Compact Heat Exchangers, ed. R. K. Shah, HTD-vol. 10, ASME, 1980.

    Google Scholar 

  97. Westwater, J. W., Compact Heat Exchangers with Phase Change, Proc. 8th Int. Heat Transfer Conf., San Francisco, vol. 1, pp. 269–278, 1986.

    Google Scholar 

  98. Robertson, J. M., Blundell, N. and Clarke, R. H., The Condensing Characteristics of Nitrogen in Plain, Brazed Aluminum, Plate-Fin Heat Exchanger Passages, Proc. 8th Int. Heat Transfer Conf., San Francisco, vol. 4, pp. 1719–1724, 1986.

    Google Scholar 

  99. Hewitt, G. F., Gas-Liquid Flow, in Heat Exchanger Design Handbook, ed. E. U. Schlünder, 2.3.2, Hemisphere Publishing Corp., New York, 1983.

    Google Scholar 

  100. Friedel, L., Improved Friction Pressure Drop Correlations for Horizontal and Vertical Two-Phase Pipe Flow, European Two-Phase Flow Group Mtg., Ispra, Italy, Paper No. E2, 1979.

    Google Scholar 

  101. Chisholm, D., Pressure Gradients due to Friction during the Flow of Evaporating Two-Phase Mixtures in Smooth Tubes and Channels, Int. J. Heat Mass Transfer, vol. 16, pp. 347–348, 1973.

    Article  Google Scholar 

  102. Lockhart, R. W. and Martinelli, R. C, Proposed Correlation of Data for Isothermal Two-Phase Two-Component Flow in Pipes, Chem. Eng. Prog., vol. 45, no. 1, pp. 39–48, 1949.

    Google Scholar 

  103. Martinelli, R. C. and Nelson, D. B., Prediction of Pressure Drop during Forced-Circulation Boiling of Water, Trans. ASME, vol. 70, pp. 695–702, 1948.

    Google Scholar 

  104. Chisholm, D., A Theoretical Basis for the Lockhart-Martinelli Correlation for Two-Phase Flow, Int. J. Heat Mass Transfer, vol. 10, pp. 1767–1778, 1967.

    Article  Google Scholar 

  105. Sardesai, R. G., Owen, R. G. and Pulling, D. J., Pressure Drop for Condensation of a Pure Vapor in Downflow in a Vertical Tube, Proc. 7th Int. Heat Transfer Conf., Munich, vol. 5, pp. 139–145, 1982.

    Google Scholar 

  106. Davidson, B. J. and Rowe, M., Simulation of Power Plant Condenser Performance by Computational Methods: An Overview, in Power Condenser Heat Transfer Technology, eds. P. J. Marto and R. H. Nunn, pp. 17–49, Hemisphere Publishing Corp., New York, 1981.

    Google Scholar 

  107. Eissenberg, D. M., Personal Communication, Oak Ridge National Laboratory, Oak Ridge, Tenn., September 28, 1977.

    Google Scholar 

  108. Brodowicz, K. and Czaplicki, A., Condensing Vapor Flow Resistance Through Tube Bundles in the Presence of Condensate on Tubes, Proc. 8th Int. Heat Transfer Conf., San Francisco, vol. 4, pp. 1689–1694, 1986.

    Google Scholar 

  109. Mueller, A. C, Pressure Drop, Heat Exchanger Design Handbook, ed. E. U. Schlünder, vol. 3, 3.4.7, Hemisphere Publishing Corp., New York, 1982.

    Google Scholar 

  110. Lee, N. K., Hollingsworth, M. A., and Mayhew Y. R., Simulation of Condenser Pressure Losses by Porous Tubes with Suction, Proc. 7th Int. Heat Transfer Conf., Munich, vol. 5, pp. 107–112, 1982.

    Google Scholar 

  111. Diehl, J. E., Calculate Condenser Pressure Drop, Pet. Refiner, vol. 36, no. 10, pp. 147–153, 1957.

    Google Scholar 

  112. Collier, J. G., Convective Boiling and Condensation, pp. 341–343, McGraw-Hill, New York, 1972.

    Google Scholar 

  113. Grant, I.D.R. and Chisholm, D., Two-Phase FLow on the Shell-Side of a Segmentally Baffled Shell-and-Tube Heat Exchanger, J. Heat Transfer, vol. 101, pp. 38–42, 1979.

    Article  Google Scholar 

  114. Grant, I.D.R. and Chisholm, D., Horizontal Two-Phase Flow Across Tube Banks, Int. J. Heat Fluid Flow, vol. 2, no. 2, pp. 97–100, 1980.

    Article  Google Scholar 

  115. Ishihara, K., Palen, J. W., and Taborek, J., Critical Review of Correlations for Predicting Two-Phase Flow Pressure Drop across Tube Banks, Heat Transfer Eng., vol. 1, no. 3, pp. 23–32, 1980.

    Article  Google Scholar 

  116. Webb, R. L., The Use of Enhanced Surface Geometries in Condensers: An Overview, in Power Condenser Heat Transfer Technology, eds. P. J. Marto and R. H. Nunn, pp. 287–324, Hemisphere Publishing Corp., New York, 1981.

    Google Scholar 

  117. Cooper, J. R. and Rose, J. W., Condensation Heat-Transfer Enhancement by Vapor-Side Surface Geometry Modification, Proc. 1981 HTFS Research Symp., Oxford, Paper RS402, pp. 647–672, 1981.

    Google Scholar 

  118. Bergles, A. E., Augmentation of Condensation, in Heat Exchanger Design Hdbk., ed. E. U. Schlünder, 2.6.6, Hemisphere Publishing Corp., New York, 1983.

    Google Scholar 

  119. Marto, P. J., Recent Progress in Enhancing Film Condensation Heat Transfer on Horizontal Tubes, Heat Transfer Eng., vol. 7, nos. 3–4, pp. 53–63, 1986.

    Article  Google Scholar 

  120. Renz, U., Measures to Improve Heat Transfer in Condensation, Ger. Chem. Engr. J., vol. 1, pp. 30–41, 1986.

    Google Scholar 

  121. Jensen, M. K., Enhanced Forced Convective Vaporization and Condensation Inside Tubes, in Heat Transfer Equipment Design, eds. R. K. Shah, E. C. Subbarao and R. A. Mashelkar, Hemisphere Publishing Corp., New York, 1987.

    Google Scholar 

  122. Bergles, A. E., Heat Transfer Augmentation, NATO ASI on Thermal-Hydraulic Fundamentals and Design of Two-Phase Flow Heat Exchangers, Povoa de Varzim, Portugal, 1987.

    Google Scholar 

  123. Gregorig, R., Film Condensation on Finely Rippled Surfaces with Consideration of Surface Tension, Z. Angew. Math. Phys., vol. V, pp. 36–49, 1954.

    Article  Google Scholar 

  124. Thomas, D. G., Enhancement of Film Condensation Rates on Vertical Tubes by Vertical Wires, Ind. Eng. Chem., Fund., vol. 6, pp. 97–102, 1967.

    Article  Google Scholar 

  125. Rudy, T. M., and Webb, R. L., Theoretical Model for Condensation on Horizontal, Integral-Fin Tubes, Heat Transfer Seattle, AIChE Symp. Ser., vol. 79, pp. 11–18, 1983.

    Google Scholar 

  126. Rudy, T. M., and Webb, R. L., An Analytical Model to Predict Condensate Retention on Horizontal Integral-Fin Tubes, J. Heat Transfer, vol. 107, pp. 361–368, 1985.

    Article  Google Scholar 

  127. Webb, R. L., Rudy, T. M. and Kedzierski, M. A., Prediction of the Condensation Coefficient on Horizontal Integral-Fin Tubes, J. Heat Transfer, vol. 107, pp. 369–376, 1985.

    Article  Google Scholar 

  128. Adamek, T., Bestimmung der Kondensationgrossen auf feingewellten Oberflachen zur Auslegun aptimaler Wandprofile, Wärme-und Stoffübertragung, vol. 15, pp. 255–270, 1981.

    Article  Google Scholar 

  129. Yau, K. K., Cooper, J. R. and Rose, J. W., Effect of Fin Spacing on the Performance of Horizontal Integral-Fin Condenser Tubes, J. Heat Transfer, vol. 107, pp. 377–383, 1985.

    Article  Google Scholar 

  130. Yau, K. K., Cooper, J. R. and Rose, J. W., Horizontal Plain and Low-Finned Condenser Tubes-Effect of Fin Spacing and Drainage Strips on Heat Transfer and Condensate Retention, J. Heat Transfer, vol. 108, pp. 946–950, 1986.

    Article  Google Scholar 

  131. Masuda, H. and Rose, J. W., Condensation of Ethylene Glycol on Horizontal Integral-Fin Tubes, Proc. ASME-JSME Thermal Eng. Conf., Honolulu, vol. 1, pp. 525–529, 1987.

    Google Scholar 

  132. Wanniarachchi, A. S., Marto, P. J. and Rose, J. W., Film Condensation of Steam on Horizontal Finned Tubes: Effect of Fin Spacing, J. Heat Transfer, vol. 108, pp. 960–966, 1986.

    Article  Google Scholar 

  133. Honda, H. and Nozu, S. and Uchima, B., A Generalized Prediction Method for Heat Transfer During Film Condensa-ion on a Horizontal Low Finned Tube, Proc. ASMEJSME Thermal Eng. Conf. Honolulu, Vol. 4, pp. 385–293, 1987.

    Google Scholar 

  134. Mitrou, E., Film Condensation Heat Transfer on Horizontal Finned Tubes, Engineer Thesis, Naval Postgraduate School, Monterey, CA., 1986.

    Google Scholar 

  135. Fujii, T., Wang, W.-C, Koyama, S. and Shimizu, Y., Heat Transfer Enhancement for Gravity Controlled Condensation on a Horizontal Tube by a Coiled Wire, Proc. Int. Symp. on Heat Transfer, vol. 2, p. 31, Beijing, China, 1985.

    Google Scholar 

  136. Marto, P. J., Mitrou, E., Wanniarachchi, A. S. and Katsuta, M., Film Condensation of Steam on a Horizontal Wire-Wrapped Tube, Proc. 1987 ASME-JSME Thermal Eng. Conf., Honolulu, vol. 1, pp. 509–516, 1987.

    Google Scholar 

  137. Honda, H. and Nozu, S., Effect of Drainage Strips on the Condensation Heat Transer Performance of Horizontal Finned Tubes, Proc. Int. Symp. on Heat Transfer, vol. 2, Beijing, China, 1985.

    Google Scholar 

  138. Glicksman, L. R., Mikic, B. B., and Snow, D. F., Agumentation of Film Condensation on the Outside of Horizontal Tubes, AIChE J., vol. 19, pp. 636–637, 1973.

    Article  Google Scholar 

  139. Desmond, R. M. and Karlekar, B. V., Experimental Observations of a Modified Condenser Tube Design to Enhance Heat Transfer in a Steam Condenser, 19th Nat ’1 Heat Transfer Conf, Orlando, ASME Paper No. 80-HT-53, 1980.

    Google Scholar 

  140. Katz, D. L. and Geist, J. H., Condensation of Six Finned Tubes in a Vertical Row, Trans. ASME, vol. 70, pp. 907–914, 1948.

    Google Scholar 

  141. Marto, P. J. and Wanniarachchi, A. S., The Use of Wire-Wrapped Tubing to Enhance Steam Condensation in Tube Bundles, in Heat Transf er in Heat Rejection Systems, ASME HTD-vol. 37, eds., S. Sengupta and Y. G. Mussalli, pp. 9–16, ASME, New York, 1984.

    Google Scholar 

  142. Brower, S. K., The Effects of Condensate Inundation on Steam Condensation Heat Transfer in a Tube Bundle, M. S. Thesis, Naval Postgraduate School, Monterey, CA., 1985.

    Google Scholar 

  143. Marto, P. J. and Wanniarachchi, A. S., Preliminary Inundation Data for Steam Condensing on Finned Tubes, Naval Postgraduate School, 1985.

    Google Scholar 

  144. Dorokhov, A. R., Experimental Study of Condensation of Flowing Freon-21 Vapor on Horizontal Finned Tubes, Heat Transfer-Soviet Research, vol. 11, no. 2, pp. 123–127, 1979.

    Google Scholar 

  145. Ishihara, K. I. and Palen, J. W., Condensation of Pure Fluids on Horizontal Finned Tube Bundles, in Condensers: Theory and Practice I. Chem. E. Symp. Series, no. 75, pp. 429–446, 1983.

    Google Scholar 

  146. Mori, Y., Hijikata, K., Hirasawa, S., and Nakayama, W., Optimized Performance of Condensers with Outside Condensing Surface, in Condensation Heat Transfer, eds. P. J. Marto and P. G. Kroeger, pp. 55–62, ASME, New York, 1979.

    Google Scholar 

  147. Panchal, C. B. and Bell, K. J., Analysis of Nusselt-Type Condensation on a Vertical Fluted Surface, Numerical Heat Transfer, vol. 3, pp. 357–371, 1980.

    Article  Google Scholar 

  148. Michel, J. W. and Murphy, R. W., Enhanced Condensation Heat Transfer, AIChE Symp. Series, vol. 76, no. 199, pp. 183–191, 1980.

    Google Scholar 

  149. Somer, T. G. and Ozgen, C., Hydrodynamics of Condensate Films on Fluted Tube Surfaces. Part I, Desalination, vol. 34, no. 3, pp. 233–247, 1980.

    Article  Google Scholar 

  150. Somer, T. G. and Ozgen, C, Effect of Surface Configuration on Heat Transfer by the Condensation of Steam over Fluted Surfaces, Desalination, vol. 34, no. 3, pp. 249–265, 1980.

    Article  Google Scholar 

  151. Vrable, D. L., Yang, W.-J. and Clark, J. A., Condensation of Refrigerant -12 Inside Horizontal Tubes with Internal Axial Fins, Proc. 5th Int. Heat Transfer Conf., Tokyo, vol. 3, pp. 250–254, 1974.

    Google Scholar 

  152. Azer, N. Z. and Said, S. A., Augmentation of Condensation Heat Transfer by Internally Finned Tubes and Twisted Tape Inserts, Proc. 7th Int. Heat Transfer Conf., Munich, vol. 5, pp. 33–38, 1982.

    Google Scholar 

  153. Khanpara, J. C, Bergles, A. E., and Pate, M. B., Augmentation of R-113 In-Tube Condensation with Micro-Fin Tubes, in Heat Transfer in Air Conditioning and Refrigeration Equipment, HTD-vol. 65, eds. J. A. Kohler and J.W.B. Lu, pp. 21–32, ASME, New York, 1986.

    Google Scholar 

  154. Griffith, P., Dropwise Condensation, in Heat Enchanger Design Hdbk, ed. E. U. Schlünder, 2.6.5, Hemisphere Publishing Corp., New York, 1983.

    Google Scholar 

  155. Hannemann, R. J., Recent Advances in Dropwise Condensation Theory, ASME Winter Annual Mtg., Atlanta, Paper No. 77-WA/HT-21, 1977.

    Google Scholar 

  156. Tanasawa, I., Dropwise Condensation the Way to Practical Applications, Proc. 6th Int. Heat Transfer Conf., Toronto, vol. 6, pp. 393–405, 1978.

    Google Scholar 

  157. Tanasawa, I., Dropwise Condensation — Progress Toward Practical Applications, Proc. Int. Symp. on Heat Transfer, Beijing, China, 1985.

    Google Scholar 

  158. Woodruff, D. W. and Westwater, J. W., Steam Condensation on Electroplated Gold: Effect of Plating Thickness, Int. J. Heat Mass Transfer, vol. 22, pp. 629–632, 1979.

    Article  Google Scholar 

  159. Woodruff, D. W. and Westwater, J. W., Steam Condensation on Various Gold Surfaces, J. Heat Transfer, vol. 103, pp. 685–692, 1981.

    Article  Google Scholar 

  160. O’Neill, G. A. and Westwater, J. W., Dropwise Condensation of Steam on Electroplated Silver Surfaces, Int. J. Heat Mass Transfer, vol. 27, pp. 1539–1549, 1984.

    Article  Google Scholar 

  161. Sundararaman, T. G. and Venkatram, T., Dropwise Condensation Using Newly Developed Promoters on Copper Substrates, Indian Chem. Engr., vol. 23, no. 4, pp. 35–38, 1981.

    Google Scholar 

  162. Marto, P. J., Looney, D. J., Rose, J. W. and Wanniarachchi, A. S., Evaluation of Organic Coatings for the Promotion of Dropwise Condensation of Steam, Int. J. Heat Mass Transfer, vol. 29, pp. 1109–1117, 1986.

    Article  Google Scholar 

  163. Zhang, D., Lin, Z. and Lin, J., New Surface Materials for Dropwise Condensation, Proc. 8th Int. Heat Transfer Conf., San Francisco, vol. 4, pp. 1677–1682, 1986.

    Google Scholar 

  164. Nash, C. A. and Westwater, J. W., A Study of Novel Surfaces for Dropwise Condensation, Proc. 198 7 ASME-JSME Thermal Eng. Conf. Honolulu, vol. 2, pp. 485–491, 1987.

    Google Scholar 

  165. Stylianou, S. A. and Rose, J. W., Dropwise Condensation on Surfaces Having Different Thermal Conductivities, J. Heat Transfer, vol. 102, pp. 477–482, 1980.

    Article  Google Scholar 

  166. Waas, P., Straub, J. and Grigull, U., The Influence of the Thermal Diffusivity of the Condenser Material on the Heat Transfer Coefficient in Dropwsie Condensation, Proc. 7th Int. Heat Transfer Conf., Munich, vol. 5, pp. 27–31, 1982.

    Google Scholar 

  167. Merte, H., Yamali, C. and Son, S., A Simple Model for Dropwise Condensation Heat Transfer Neglecting Sweeping, Proc. 8th Int. Heat Transfer Conf., San Francisco, vol. 4, pp. 1655–1664, 1986.

    Google Scholar 

  168. Croix, J. M. and Liegeois, Condensation in a Horizontal Tube Bundle, Rept. TT/SETRE/78–3-B/JMC, ALi, Centre Nucleaire Grenoble, France, March 1978.

    Google Scholar 

  169. Watson, R.G.H., Brunt, J. J. and Birt, D.C.P., Dropwise Condensation of Steam, Int. Development in Heat Transfer, pt. 2, pp. 296–301, ASME, New York, 1961.

    Google Scholar 

  170. Tanasawa, I. and Saito, M., Film and Dropwise Condensation of Steam on a Vertical Bank of Horizontal Circular Tubes, Proc. 1987 ASME-JSME Thermal Eng. Conf., Honolulu, vol. 5, pp. 143–148, 1987.

    Google Scholar 

  171. Sideman, S. and Moalem-Maron, D., Direct Contact Condensation, in Adv. in Heat Transfer, eds. J. P. Harnett and T. F. Irvine, vol. 15, pp. 228–281, Academic Press, New York, 1982.

    Google Scholar 

  172. Jacobs, H. R., Direct-Contact Condensers, in Heat Exchanger Design Hdbk, ed. E. U. Schlünder, pp. 2.6.8, Hemisphere Publishing Corp., New York, 1983.

    Google Scholar 

  173. Jacobs, H. R., Direct Contact Condensation, What We Know and What We Don’t, NSF Workshop on Direct Contact Heat Exchange, August, 1985.

    Google Scholar 

  174. Jacobs, H. R. and Cook, D. S., Direct Contact Condensation on a Noncirculating Drop, Proc. 6th Int. Heat Transfer Conf., Toronto, vol. 2, pp. 389–393, 1978.

    Google Scholar 

  175. Ford, J. D. and Lekic, A., Rate of Growth of Drops During Condensation, Int. J. Heat Mass Transfer, vol. 16, pp. 61–64, 1973.

    Article  Google Scholar 

  176. Sundararajan, T. and Ayyaswamy, P. S., Heat and Mass Transfer Associated with Condensation on a Moving Drop: Solutions for Intermediate Reynolds Numbers by a Boundary Layer Formulation, J. Heat Transfer, vol. 107, pp. 409–416, 1985.

    Article  Google Scholar 

  177. Kulic, E. and Rhodes, E., Direct Contact Condensation from Air-Steam Mixtures on a Single Droplet, Can. J. Chem. Engrg., vol. 55, pp. 131–137, 1977.

    Google Scholar 

  178. Hasson, D., Luss, D. and Peck, R., Theoretical Analyses of Vapor Condensation on Laminar Jets, Int. J. Heat Mass Transfer, vol. 7, pp. 969–981, 1964.

    Article  MATH  Google Scholar 

  179. Hasson, D., Luss, D. and Navon, U., An Experimental Study of Steam Condensation on a Laminar Water Sheet, Int. J. Heat Mass Transfer, vol. 7, pp. 983–1001, 1964.

    Article  Google Scholar 

  180. Jacobs, H. R., Bogart, J. A. and Pensei, R. W., Condensation on a Thin Film Flowing Over an Adiabatic Sphere, Proc. 7th Int. Heat Transfer Conf., Munich, vol. pp. 89–94, 1982.

    Google Scholar 

  181. Florschuetz, L. W. and Chao, B. T., On the Mechanics of Vapor Bubble Collapse, J. Heat Transfer, vol. 87, pp. 209–220, 1965.

    Google Scholar 

  182. Moalem-Maron, D. and Zijl, W., Growth, Condensation and Departure of Small and Large Bubbles in Pure and Binary Systems, Chem. Eng. Sci, vol. 33, pp. 1339–1346, 1978.

    Article  Google Scholar 

  183. Wittke, D. D. and Chao, B. T., Collapse of Vapor Bubbles with Translatory Motion, J. Heat Transfer, vol. 89, pp. 17–24, 1967.

    Google Scholar 

  184. Isenberg, J., Moalem-Maron, D. and Sideman, S., Direct Contact Heat Transer with Changes in Phase: Bubble Collap with Translatory Motion in Single and Two Component Systems, Proc. 4th Int. Heat Transfer Conf., Paris, vol. p. B.2.5, 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Marto, P.J. (1988). Fundamentals of Condensation. In: Kakaç, S., Bergles, A.E., Fernandes, E.O. (eds) Two-Phase Flow Heat Exchangers. NATO ASI Series, vol 143. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2790-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2790-2_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7755-2

  • Online ISBN: 978-94-009-2790-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics