Skip to main content

Correlations for Forced Convection in Ducts

  • Chapter
Two-Phase Flow Heat Exchangers

Part of the book series: NATO ASI Series ((NSSE,volume 143))

Abstract

A large number of experimental and analytical correlations are available for heat transfer coefficient and flow friction factor for laminar and turbulent flow through channels. In this article, a comprehensive review is made of the available correlations for the laminar and turbulent flow of single-phase Newtonian fluid through circular and noncircular ducts. The effect of property variations is discussed. Important correlations are summarized in tabular form and specific correlations are recommended for a heat exchanger design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Shah, R.K. and London, A.L., Laminar Forced Convection in Ducts, Academic, New York, 1978.

    Google Scholar 

  2. Shah, R.K. and Bhatti, M.S., Laminar Convective Heat Transfer in Ducts in Handbook of Single-Phase Convective Heat Transfer, Ed., S. Kakac, R.K. Shah and W. Aung, John Wiley, New York, pp. 3.1–3.137, 1987.

    Google Scholar 

  3. Schünder, E.U. (Ed.), Heat Exchanger Design Handbook, Hemisphere, New York, pp.2.5.1–2.5.13, 1983.

    Google Scholar 

  4. Hausen, H., Neue Gleichungen für die Wärmeübertragung bei freier oder erzwungener Strömung Allg. Waermetech., Vol.9, pp.75–79, 1959.

    Google Scholar 

  5. Kakaç, S., Laminar Forced Convection in the Combined Entrance Region of Ducts, in Natural Convection: Fundamentals and Applications, Ed. S. Kakaç, W. Aung and R. Viskanta, Hemisphere, New York, pp.165–204, 1985.

    Google Scholar 

  6. Pohlhausen, E., Der Warmeaustausch Zwischen festen Körpern und Flüssigkeiten mit Kleiner Reibung und Kleiner Warmeleitung, Z. Angew. Math. Mech., Vol.1, pp.115–121, 1921.

    Article  Google Scholar 

  7. Delorenzo, B. and Anderson, E.D., Heat Transfer and Pressure Drop of Liquids in Double Pipe Fintube Exchangers, Trans. ASME, Vol.67, pp.697, 1945.

    Google Scholar 

  8. Stephan, K., Warmeübergang und Druckabfall beinichtausgebildeter Laminar Störmung in Rohren und ebenen Spalten, Chem. Ing. Tech., Vol.31, pp.773–778, 1959.

    Article  Google Scholar 

  9. Deissler, R.G., Analytical Investigation of Fully Developed Laminar Flow in Tubes With Heat Transfer With Fluid Properties Variable Along the Radius, NACA TN 2410, 1951.

    Google Scholar 

  10. Yang, K.T., Laminar Forced Convection of Liquids in Tubes with Variable Viscosity, J. Heat Transfer, Vol.84, pp.353–362, 1962.

    Google Scholar 

  11. Sieder, E.N. and Tate, G.E., Heat Transfer and Pressure Drop of Liquids in Tubes, Ind. Eng. Chem., Vol.28, pp.1429–1453, 1936.

    Article  Google Scholar 

  12. Whitaker, S., Forced Convection Heat-Transfer Correlations for Flow in Pipes, past Flat Plates, Single Cylinders, Single Spheres, and Flow in Packed Beds and Tube Bundles, AIChE, J., Vol.18, pp.361–371, 1972.

    Article  Google Scholar 

  13. Oskay, R. and Kakaç, S., Effect of Viscosity Variations on Turbulent and Laminar Forced Convection in Pipes, METU J. Pure and Applied Sci., Vol.6, pp.211–230, 1973.

    Google Scholar 

  14. Kuznetsova, V.V., Convective Heat Transfer with Flow of a Viscous Liquids in a Horizontal Tube (in Russian), Teploenergetika, Vol.19, No.5, pp.84, 1972.

    Google Scholar 

  15. Test, F.L., Laminar Flow Heat Transfer and Fluid Flow for Liquids with a Temperature Dependent Viscosity, J. Heat Transfer, Vol.90, pp.385–393, 1968.

    Google Scholar 

  16. Worsøe-Schmidt, P.M., Heat Transfer and Friction for Laminar Flow of Helium and Carbon Dioxide in a Circular Tube at High Heating Rate, Int. J. Heat-Mass Transfer, Vol.9, pp.1291–1295, 1966.

    Article  Google Scholar 

  17. Bhatti, M.S. and Shah, R.K., Turbulent Forced Convection in Ducts, in Handbook of Single-Phase Convective Heat Transfer, Ed. S. Kakaç, R.K. Shah and W. Aung, John Wiley, pp. 4.1–4.166, New York, 1987.

    Google Scholar 

  18. Petukhov, B.S. and Popov, V.N., Theoretical Calculation of Heat Exchange and Frictional Resistance in Turbulent Flow in Tubes of Incompressible Fluid with Variable Physical Properties, High Temperature, Vol.1, No.1, pp.69–83, 1963.

    Google Scholar 

  19. Petukhov, B.S., Heat Transfer and Friction in Turbulent Pipe Flow with Variable Physical Properties, Advances in Heat Transfer, Ed. J.P. Hartnett and T.V. Irvine, Academic Press, New York, Vol.6, pp.504–564, 1970.

    Google Scholar 

  20. Webb, R.I., A Critical Evaluation of Analytical Solutions and Reynolds Analogy Equations for Heat and Mass Transfer in Smooth Tubes, Warme-und Staffübertragung, Vol.4, pp.197–204, 1971.

    Article  Google Scholar 

  21. Sleicher, C.A. and Rause, M.W., A Convenient Correlation for Heat Transfer to Constant and Variable Property Fluids in Turbulent Pipe Flow Int. J. Heat Mass Transfer, Vol.18, pp.677–683, 1975.

    Article  Google Scholar 

  22. Gnielinski, V., New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow, Int. Chem. Eng., Vol.16, pp.359–368, 1976.

    Google Scholar 

  23. Kays, W.M. and Crawford, M.E., Convective Heat and Mass Transfer, Second Edition, McGraw Hill, New York, 1981.

    Google Scholar 

  24. Kakaç, S. and Yener, Y., Convective Heat Transfer, METU Publication No.65, Ankara, Turkey; distributed by Hemisphere, New York, 1980.

    Google Scholar 

  25. McAdams, W.H., Heat Transmission, Third edition, McGraw Hill, New York, 1954.

    Google Scholar 

  26. Kakaç, S., The Effects of Temperature-Dependent Fluid Properties on Convective Heat Transfer, in Handbook of Single-Phase Convective Heat Transfer, Ed. S. Kakaç, R.K. Shah and W. Aung, John Wiley, New York, pp.18.1–18.92, 1987.

    Google Scholar 

  27. Hausen, H., Darstellung des Warmeüberganges in Rohren durch verallgemeinerte Potenzbeziebungen, Z. Ver. Dtsch. Ing. Beiheft Verfahrenstech., No.4, pp.91–134, 1943.

    Google Scholar 

  28. Rehme, K., A Simple Method of Prediciting Friction Factors of Turbulent Flow in Noncircular Channels, Int. J. Heat Mass Transfer, Vol.16, pp.933–950, 1973.

    Article  Google Scholar 

  29. Malak, J., Hejna, J. and Schmid, J., Pressure Losses and Heat Transfer in Noncircular Channels with Hydraulically Smooth Walls, Int. J. Heat Mass Transfer, Vol.18, pp.139–149, 1975.

    Article  Google Scholar 

  30. Brundrett, E., Modified Hydraulic Diameter, Turbulent Forced Convection in Channels and Bundles, Ed. S. Kakaç and D.B. Spalding, Vol.1, pp.361–367, Hemisphere, New York, 1979.

    Google Scholar 

  31. Perkis, H.C. and Wors∅e-Schmidt, P., Turbulent Heat and Momentum Transfer for Gases in a Circular Tube at Wall to Bulk Temperature Ratios to Seven, Int. J. Heat Mass Transfer, Vol.8, pp.1011–1031, 1965.

    Article  Google Scholar 

  32. McElligot, D.M., Magee, P.M. and Leppert, G., Effect of Large Temperature Gradients on Convective Heat Transfer; the Downstream region, J. Heat Transfer, Vol.87, pp.67–76, 1965.

    Google Scholar 

  33. Colbourn, A.P., A Method of Correlating Forced Convection Heat Transfer Data and Comparison with Fluid Friction, Trans. AIChE, Vol.29, pp.174–210, 1933.

    Google Scholar 

  34. Hufschmidt, W., Burck, E. and Riebold, W., Die Bestimmung Örlicher und Warmeübergangs-Zahlen in Rohren bei Hohen Warmestromdichten, Int. J. Heat Mass Transfer, Vol.9, pp.539–565, 1966.

    Article  Google Scholar 

  35. Rogers, D.G., Forced Convection Heat Transfer in Single Phase Flow of a Newtonian Fluid in a Circular Pipe, CSIR Report CENG 322, Pretoria, South Africa, 1980.

    Google Scholar 

  36. Hausen, H., Extended Equation for Heat Transfer in Tubes at Turbulent Flow, Warme-und Stoffübertragung, Vol.7, pp.222–225, 1974.

    Article  Google Scholar 

  37. Humble, L.V., Lowdermilk, W.H. and Desmon, L.G., Measurement of Average Heat Transfer and Friction Coefficients for Subsonic Flow of Air in Smooth Tubes at High Surface and Fluid Temperature, NACA Report 1020, 1951.

    Google Scholar 

  38. Barnes, J.F. and Jakson, J.D., Heat Transfer to Air, Carbon Dioxide and Helium Flowing through Smooth Circular Tubes under Conditions of Large Surface/Gas Temperature Ratio, J. Mech. Eng. Sci., Vol.3, No.4, pp.303–314, 1961.

    Article  Google Scholar 

  39. Dalle-Donne, M. and Bowditch, P.W., Experimental Local Heat Transfer and Friction Coefficients for Subsonic Laminar Transitional and Turbulent Flow of Air or Helium in a Tube at High Temperatures, Dragon Project Rept. 184, Winfirth, Dorchester, Dorset, U.K., 1963.

    Google Scholar 

  40. Kakaç, S., Shah, R.K. and Aung, W. (Eds.), Handbook of Single-Phase Convective Heat Transfer, John Wiley, New York, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Kakaç, S., Oskay, R., Zhang, H.Y. (1988). Correlations for Forced Convection in Ducts. In: Kakaç, S., Bergles, A.E., Fernandes, E.O. (eds) Two-Phase Flow Heat Exchangers. NATO ASI Series, vol 143. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2790-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2790-2_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7755-2

  • Online ISBN: 978-94-009-2790-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics