Skip to main content

Hygroscopic Film Condenser-Evaporator Heat Cycle

  • Chapter
Two-Phase Flow Heat Exchangers

Part of the book series: NATO ASI Series ((NSSE,volume 143))

Abstract

Direct contact hygroscopic condensation of water vapor on concentrated aqueous brine films, while simultaneously producing water vapor from adjacent water films flowing on the other side of the wall, is explored theoretically and experimentally. This process is the heart of an “internal” power cycle based on concentration differences and is driven by the difference in the partial pressures of the water in the brine and that of pure water. The basic thermodynamic limitations are derived, showing the advantage of the proposed internal direct-contact simultaneous condensation-evaporation process over the power cycle based on external heat transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Isshiki, N., Development of CDE (Concentration Difference Energy) System and Engine, American Chemical Society, pp. 1998–2003, 1979.

    Google Scholar 

  2. Moalem Maron, D., and Brauner, N., Analysis of power cycles based on absorption condenser evaporator, Report I: Project 0251, School of Engineering, Tel Aviv University. Submitted ORMAT Turvinds LTD., 1983.

    Google Scholar 

  3. Moalem Maron, D., and Sideman, S., Theoretical Analysis of a Horizontal Condenser-Evaporator Tube. Int. J. Heat Mas Transfer, vol. 19, pp. 259–270, 1976.

    Article  Google Scholar 

  4. Moalem Maron, D., and Sideman, S., Theoretical Analysis of a Horizontal Condenser Elliptical Tube, Trans. Am. J. of Heat Transfer, vol. 97, pp. 352–359, 1975.

    Article  Google Scholar 

  5. Brauner, N., Moalem Maron, D., and Sideman, S., Simultaneous Mass and Heat Transfer in Direct Contact Hygroscopic Condensation, Proc. 8th Int. Heat Transfer Conf., (San Francisco), vol. 4, pp. 1647–1652, 1986.

    Google Scholar 

  6. Brauner, N., Moalem Maron, D., and Sideman, S., Heat and Mass Transfer in Direct Contact Hygroscopic Condensation, Varme Stoffubertragung, vol. 21, pp. 233–245, 1987.

    Article  Google Scholar 

  7. Henstock, W.H., and Hanratty, T.J., Gas Absorption by a Liquid Layer Flowing on the Wall of a Pipe, AICHE J., vol. 25, pp. 122–131, 1979.

    Article  Google Scholar 

  8. Bin, A.K., Mass Transfer into Turbulent Liquid Film, Int. J. Heat Mass Transfer, vol. 26, pp. 981–991, 1983.

    Article  Google Scholar 

  9. Yih, S.M., and Chen, K.Y., Gas Absorpiton into Wavy and Turbulent Falling Liquid Films in a Wetted Wall Column, Chem. Eng. Commun., vol. 17, pp. 123–136, 1982.

    Article  Google Scholar 

  10. Kutadeladze, S.S., Fundamentals of Heat Transfer, pp. 307, Edward Arnold, London, 1963.

    Google Scholar 

  11. Chun, K.R., and Seban, R.A., Heat Transfer to Evaporating Liquid Films, J. of Heat Transfer., Trans. ASME, Series C, vol. 93(4), pp. 391–396, 1971.

    Article  Google Scholar 

  12. Groothuis, G., and Hendal W.P., Heat Transfer in Two Phase Flow, Chem. Eng. Sci., vol. 11, pp. 212–220, 1959.

    Article  Google Scholar 

  13. Wallis, G.B., One Dimensional Two Phase Flow, McGraw-Hill, New York, 1969.

    Google Scholar 

  14. Grossman, G., Heat and Mass Transfer in Film Absorption, in Handbook of Heat and Mass Transfer, ed. Chezemisinoff, N.P., pp. 211–258, Gulf Publishing Co., Houston, 1986.

    Google Scholar 

  15. Brauner, N., Moalem Maron, D., and Harel, Z., Wettability, Rewettability and Breakdown of Thin Film of Aqueous Salt Solutons, Desalination, vol. 52, pp. 295–307, 1985.

    Article  Google Scholar 

  16. Skoog, D.A., and West, D.M., Fundamentals of Analytical Chemistry, 2nd Edition, pp. 266–279, Holt, Rinehart and Winston Inc., New York, 1963.

    Google Scholar 

  17. Feind, K., Stromungsuntersuchungen bei gegenstrom van rieselsilmen und gas lotrechten rohresn, VBI-Sorschundshesp, p. 481, 1960.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Brauner, N., Maron, D.M., Harel, Z., Sideman, S. (1988). Hygroscopic Film Condenser-Evaporator Heat Cycle. In: Kakaç, S., Bergles, A.E., Fernandes, E.O. (eds) Two-Phase Flow Heat Exchangers. NATO ASI Series, vol 143. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2790-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2790-2_29

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7755-2

  • Online ISBN: 978-94-009-2790-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics