Skip to main content

A form-function analysis of photon capture for seaweeds

  • Conference paper
Thirteenth International Seaweed Symposium

Part of the book series: Developments in Hydrobiology ((DIHY,volume 58))

Abstract

The ecological significance of photoadaptation and photoacclimation is at best inferential. This is attributed to two factors: 1) The dimensions of light absorption by multicellular tissues are inadequately described by theory, which is confounded by the interaction of polychromatic light fields with different light harvesting pigment-protein systems, the package effect, heterogeneous absorption and multiple scatter. 2) The practice of extrapolating light utilization for growth from physiological scale measurements, i.e. photosynthesis-incident light curves. Needed are parameters designed to yield the relation of light absorption properties (a function of LHPPs and tissue anatomy) to light utilization efficiency. The parameters, absorption cross section normalized to carbon (aC) and photon growth yield (PGY), the growth analog of quantum yield, are demonstrated here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bricaud, A., A. Morel & L. Prieur, 1983. Optical efficiency factors of some phytoplankters. Limnol. Oceanogr. 28: 816–832.

    Article  Google Scholar 

  • Britz, S.J. & W. R. Briggs, 1976. Circadian rhythms of chloroplast orientation and photosynthetic capacity in Ulva. Plant Physiol. 58: 22–27.

    Article  PubMed  CAS  Google Scholar 

  • Colombo, P. M. & M. Orsenigo, 1977. Sea depth effects on the algal photosynthetic apparatus II. An electron microscopic study of the photosynthetic apparatus of Halimeda tuna (Chlorophyta, Siphonales) at sea depths between 7 and 15 m. Phycologia 16: 9–17.

    Article  Google Scholar 

  • Dubinsky, Z., P. G. Falkowski & K. Wyman, 1986. Light harvesting and utilization in phytoplankton. Plant Cell Physiol. 27: 1335–1349.

    CAS  Google Scholar 

  • Ehleringer, J., 1981. Leaf absorptance of Mohave and Sonoran desert plants. Oecologia 49: 366–370.

    Article  Google Scholar 

  • Falkowski, P. G., Z. Dubinsky & K. Wyman, 1985. Growth-irradiance relationships in phytoplankton. Limnol. Oceanogr. 30: 311–321.

    Article  CAS  Google Scholar 

  • Kirk, J. T. O., 1983. Light and Photosynthesis in Aquatic Systems. Cambridge Univ. Press, Cambridge, 401 pp.

    Google Scholar 

  • Lapointe, B. E., K. R. Tenore & C. J. Dawes, 1984. Interactions between light and temperature on the physiological ecology of Gracilaria tikvahiae (Gigartinales, Rhodophyta). I. Growth, photosynthesis, and respiration. Mar. Biol. 80: 161–170.

    Article  CAS  Google Scholar 

  • Latimer, P., 1983. The deconvolution of absorption spectra of green plant materials — improved corrections for the sieve effect. Photochem. Photobiol. 38: 731–734.

    Article  Google Scholar 

  • Morel, A. & A. Bricaud, 1981. Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep Sea Res. 28A: 1375–1393.

    Google Scholar 

  • Osborne, B. A. & J. A. Raven, 1986. Light absorption by plants and its implications for photosynthesis. Biol. Rev. 61: 1–61.

    Article  CAS  Google Scholar 

  • Prézelin, B. B., 1981. Light reactions in photosynthesis. In T. R. Platt (ed.), Physiological bases of phytoplankton ecology. Can. Bull. Fish, aquat. Sci. 210: 1–54.

    Google Scholar 

  • Ramus, J., 1978. Seaweed anatomy and photosynthetic performance: The ecological significance of light guides, heterogenous absorption and multiple scatter. J. Phycol. 14: 352–362.

    Article  Google Scholar 

  • Ramus, J., 1983. A physiological test of the theory of complementary chromatic adaptation. II. Red, green and brown seaweeds. J. Phycol. 19: 173–178.

    Article  CAS  Google Scholar 

  • Ramus, J. & M. Venable, 1987. Temporal ammonium patchiness and growth rate in Codium and Ulva (Ulvophyceae). J. Phycol. 23: 518–523.

    Article  CAS  Google Scholar 

  • Saffo, M. B., 1987. New light on seaweeds. Bioscience 37: 654–664.

    Article  Google Scholar 

  • Vögelmann, T. C. & L. O. Björn, 1986. Plants as light traps. Physiol. Plantarum 8: 704–708.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Kluwer Academic Publishers

About this paper

Cite this paper

Ramus, J. (1990). A form-function analysis of photon capture for seaweeds. In: Lindstrom, S.C., Gabrielson, P.W. (eds) Thirteenth International Seaweed Symposium. Developments in Hydrobiology, vol 58. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2049-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2049-1_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7419-3

  • Online ISBN: 978-94-009-2049-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics