Skip to main content

Some Modeling Methods of Combustion Instabilities

  • Chapter
Unsteady Combustion

Part of the book series: NATO ASI Series ((NSSE,volume 306))

Abstract

This article provides a review of modeling methods for combustion instability studies. After a presentation of classical material the paper focuses on modern methods. The survey concerns models of flame front dynamics, LES simulations, hydrodynamic instability studies of reactive flows, vortex ignition studies and nonlinear acoustic models for dynamical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Awad, E. and Culick, F. E. C. (1986). Existence and stability of limit cycles for longitudinal acoustic waves in a combustion chamber. Combustion Science and Technology 46, 169–181.

    Article  Google Scholar 

  • Barrère, M., Jaumotte, A., Fraeijis de Veubeke, B. and Vandenkerckhove, J. (1960). Rocket propulsion. Amsterdam: Elsevier.

    Google Scholar 

  • Barrère, M. and Williams, F. A. (1968). Comparison of combustion instabilities found in various types of combustion chambers. In Eleventh Symposium (International) on Combustion. Pittsburgh: The Combustion Institute, 169–181.

    Google Scholar 

  • Baum, H. R., Corley, D. M. and Rehm, R. G. (1986). Time dependent simulation of small scale turbulent mixing and reaction. In Twenty first Symposium (International) on Combustion. Pittsburgh: The Combustion Institute, 1263–1270.

    Google Scholar 

  • Baum, J. D. and Levine, J. N. (1982). Numerical techniques for solving nonlinear instability problems in solid rocket motors. AIAA Journal 20, 955–961.

    Article  Google Scholar 

  • Billoud, G., Huynh, C., Galland, M. and Candel, S. (1992). Adaptive active control of combustion instabilities. Combustion Science and Technology 81, 257.

    Article  Google Scholar 

  • Blackshear, P. L. (1956). Growth of disturbances in a flame generated shear region. NACA Report 1360,

    Google Scholar 

  • Candel, S. (1992). Combustion instabilities coupled by pressure waves and their active control. In 24th Symposium (International) on Combustion. Pittsburgh: The Combustion Institute, 1277–1296.

    Google Scholar 

  • Clavin, P., Pelc, P. and He, L. (1990). One-dimensional vibratory instability of planar flames propagating in tubes. Journal of Fluid Mechanics 216, 299–322.

    Article  MATH  Google Scholar 

  • Clavin, P. and Sun, J. (1991). Theory of acoustic instabilities of planar flames propagating in sprays or particle-laden gases. Combustion Science and Technology 78, 265–288.

    Article  Google Scholar 

  • Crocco, L. (1951). Aspects of combustion instability in liquid propellant rocket motors. Journal of the American Rocket Society 21, 163.

    Google Scholar 

  • Crocco, L. (1965). Theoretical studies on liquid-propellant rocket instability. In Tenth Symposium (International) on Combustion. Pittsburgh: The Combustion Institute, 1101–1128.

    Google Scholar 

  • Crocco, L. and Cheng, S. L. (1956). Theory of combustion instability in liquid propellant rocket motors. AGARDOGRAPH N 8, Butterworths Science Publication.

    Google Scholar 

  • Crocco, L., Grey, J. and Harrje, D. T. (1960). Theory of liquid propellant rocket combustion instability and its experimental verification. J. Aeronautical Research Journal 30, 159–168.

    Google Scholar 

  • Crocco, L., Harrje, D. T., Sirignano, W. A. and al., e. (1968). Nonlinear aspects of combustion instability in liquid propellant rocket motors. NASA CR 72426,

    Google Scholar 

  • Culick, F. E. C. (1976). Nonlinear behavior of acoustic waves in combustion chambers. Parts I and II. Acta Astronautica 3, 714–757.

    Google Scholar 

  • Culick, F. E. C. (1988). Combustion instabilities in liquid-fueled propulsion systems-an overview. AGARD Conference on Combustion instabilities in liquid-fuelled propulsion systems

    Google Scholar 

  • Ghoniem, A. F., Heidarinejad, G. and Krishan, A. (1987). Numerical simulation of a reacting shear layer using the transport element method.

    Google Scholar 

  • Ghoniem, A. F. and Najm, H. N. (1989). Numerical simulation of the coupling between vorticity and pressure oscillations in combustion instability. AIAA Paper 89-2665,

    Google Scholar 

  • Harrje, D.J. and Reardon, F. H. (1972). Liquid propellant rocket instability. NASA SP-194,

    Google Scholar 

  • Huynh, C. (1993). PhD thesis, Ecole Centrale Paris, Chatenay-Malabry.

    Google Scholar 

  • Jou, W. H. and Menon, S. (1987). Simulations of ramjet combustor flow fields. Part II. Origin of pressure oscillations.

    Google Scholar 

  • Kailasanath, K., Gardner, J. H., Boris, J. P. and Oran, E. S. (1987). Numerical simulations of acoustic-vortex interactions in a central-dump combustor. Journal of Propulsion 3, 525–533.

    Article  Google Scholar 

  • Karagozian, A. R. and Marble, F. E. (1986). Study of a diffusion flame in a stretched vortex. Combustion Science and Technology 46, 65–84.

    Article  Google Scholar 

  • Koochesfahani, M. M. and Frieler, C. E. (1989). Instability of nonuniform density free shear layers with a wake profile. AIAA Journal 27, 1735–1740.

    Article  Google Scholar 

  • Kotake, S. (1975). On combustion noise related to chemical reactions. Journal of Sound and Vibration 42, 399–410.

    Article  Google Scholar 

  • Laverdant, A., Poinsot, T. and Candel, S. (1986). Influence of the mean temperature field on the acoustic mode structure in a dump combustor. Journal of Propulsion and Power 2, 311–316.

    Article  Google Scholar 

  • Leder, G. and Kapila, A. K. (1991). The response of premixed flames to pressure perturbations. Combustion Science and Technology 76, 21–44.

    Article  Google Scholar 

  • Macaraeg, M. G., Jacson, T. L. and Hussaini, M. Y. (1991). Ignition and structure of a laminar diffusion flame in the field of a vortex. ICASE 91–69, ICASE.

    Google Scholar 

  • Mahalingam, S., Cantwell, B. J. and Ferziger, J. H. (1991). Stability of low-speed reacting flows. Physics of Fluids A 3, 1533–1543.

    Google Scholar 

  • Mallard, E. E. and Le Chatelier, H. (1883). Recherches experimentales et thoriques sur la combustion de melanges gazeux explosifs. Annales des Mines, Partie Scientifique et Technique Ser. 8, no. 4, 274.

    Google Scholar 

  • Marble, F. E. (1955). Servo-stabilization of low-frequency oscillations in liquid propellant rocket motors. ZAMP J. Applied Mathematics and Physics VI/1, 1–35.

    Article  Google Scholar 

  • Marble, F. E. (1985). Growth of a diffusion flame in the field of a vortex. In Recent advances in the aerospace sciences. Casci, E. New York: Plenum Press, 395–413.

    Google Scholar 

  • Marble, F. E. and Candel, S. (1978). An analytical study of the nonsteady behavior of large combustors. In 17th Symposium(International) on Combustion. Pittsburgh: The Combustion Institute, 761–769.

    Google Scholar 

  • Marble, F. E. and Cox, D. W. (1953). Servo-stabilization of low-frequency oscillations in a liquid bipropellant rocket motor. Journal of the American Rocket Society 23, 63–81.

    Google Scholar 

  • Marble, F. E. and Hendricks, G. J. (1986). Structure and behavior of diffusion flames in a pressure gradient. In Twenty first Symposium (International) on Combustion. Pittsburgh: The Combustion Institute, 1321–1327.

    Google Scholar 

  • Marble, F. E., Subbaiah, M. V. and Candel, S. (1979). Analysis of low frequency disturbances in afterburners. Proceedings of the AGARD Specialists Meeting on Combustion Modelling

    Google Scholar 

  • Markstein, G. H. (1951). Experimental and theoretical studies of flame front stability. Journal of the Aeronautical Sciences Journal of Aeronautical Science 18, 199–209.

    Google Scholar 

  • Markstein, G. H. and Somers, L. M. (1953). Cellular flame structure and vibratory flame movement in N-butane-methane mixtures. 527–535

    Google Scholar 

  • Markstein, G. H. and Squire, W. (1955). On the stability of a plane flame front in oscillating flow. Journal of the Acoustical Society of America 27, 416–424.

    Article  Google Scholar 

  • McIntosh, A. C. (1986). The effect of upstream acoustic forcing and feedback on the stability and resonance of anchored flames. Combustion Science and Technology 49, 143–167.

    Article  Google Scholar 

  • McIntosh, A. C. (1991). Pressure disturbances of different length scales interacting with conventional flames.. Combustion Science and Technology 75, 287–309.

    Article  Google Scholar 

  • McIntosh, A. C. and Wilce, S. A. (1991). High frequency pressure wave interaction with premixed flames. Combustion Science and Technology 79, 141–155.

    Article  Google Scholar 

  • McManus, K., Poinsot, T. and Candel, S. (1993). A review of active control of combustion instability. Progress in Energy and Combustion Science 19, 1–29.

    Article  Google Scholar 

  • Menon, S. and Jou, W. H. (1987). Simulations of ramjet combustor flow fields; PartI. Numerical model, large scale and mean motions. AIAA Paper 87-1421,

    Google Scholar 

  • Menon, S. and Jou, W. H. (1990). Numerical simulations of oscillatory cold flows in an axisymmetric ramjet. Journal of Propulsion and Power 6,

    Google Scholar 

  • Menon, S. and Jou, W. H. (1991). Large-Eddy simulations of combustion instability in an axisymmetric ramjet combustor. Combustion Science and Technology 75, 53–72.

    Article  Google Scholar 

  • Najm, H. N. and Ghoniem, A. F. (1991). Modeling pulsating combustion due to flow-flame interactions in vortex-stabilized premixed flames. International Symposium on Pulsating Combustion

    Google Scholar 

  • Phillips, O. M. (1960). On the generation of sound by supersonic turbulent shear layers. Journal of Fluid Mechanics 9, 1–28.

    Article  MathSciNet  MATH  Google Scholar 

  • Poinsot, T. and Candel, S. (1988). A nonlinear model for ducted flame combustion instabilities. Combustion Science and Technology 61, 121–153.

    Article  Google Scholar 

  • Poinsot, T., Veynante, D. and Candel, S. (1991). Quenching processes and premixed turbulent combustion diagrams. Journal of Fluid Mechanics 228, 561–606.

    Google Scholar 

  • Putnam, A. A. (1971). Combustion driven oscillations in industry. New York: Elsevier.

    Google Scholar 

  • Putnam, A. A., Belles, F. E. and Kentfield, J. A. C. (1986). Pulse combustion. Progress in Energy and Combustion Science 12, 43–79.

    Article  Google Scholar 

  • Rayleigh, L. J. W. S. (1878). The explanation of certain acoustic phenomena. Nature 18, 319–321.

    Article  Google Scholar 

  • Samaniego, J. M. (1992). Etude des instabilites de combustion dans les statoreacteurs. Doctoral Thesis, Ecole Centrale Paris, Chatenay-Malabry.

    Google Scholar 

  • Samaniego, J. M., Yip, B., Poinsot, T. and Candel, S. (1993). Low frequency combustion instability in a side dump combustor. Combustion and Flame 94, 363–380.

    Article  Google Scholar 

  • Searby, G. and Rochwerger, D. (1991). A parametric acoustic instability in premixed flames. Journal of Fluid Mechanics 231, 529–543.

    Article  MATH  Google Scholar 

  • Shin, D. and Ferziger, J. H. (1990). Linear stability of the reacting mixing layer. AIAA Paper 90-0268,

    Google Scholar 

  • Smith, D. A. and Zukoski, E. E. (1985). Combustion instability sustained by unsteady vortex combustion. AIAA Paper 85-1248,

    Google Scholar 

  • Strahle, W. C. (1971). On combustion generated noise. Journal of Fluid Mechanics 49, 399–414.

    Article  MATH  Google Scholar 

  • Subbaiah, M. V. (1983). Nonsteady flame spreading in two-dimensional ducts. AIAA Journal 11, 1557–1564.

    Article  Google Scholar 

  • Summerfield, M. (1951). A theory of unstable propulsion in liquid propellant rocket systems. American Rocket Society Journal 21, 108–114.

    Google Scholar 

  • Thevenin, D. and Candel, S. (1991). Ignition dynamics of a diffusion flame rolled-up in a vortex. SIAM Conference on Numerical Combustion

    Google Scholar 

  • Trouve, A., Candel, S. M. and Daily, J. W. (1988). Linear stability of the inlet jet in a ramjet dump combustor. AIAA Paper 88-0149,

    Google Scholar 

  • Tsien, H. S. (1952). Servo-stabilization of combustion in rocket motors. American Rocket Society Journal 22, 256–263.

    Google Scholar 

  • Williams, F. A. (1985). Combustion theory. Menlo Park: Benjamin/Cummings.

    Google Scholar 

  • Yang, V. and Culick, F. E. C. (1984). Analysis of low frequency oscillations in a laboratory ramjet combustor. Combustion Science and Technology 45, 1–25.

    Article  Google Scholar 

  • Yang, V., Kim, S. I. and Culick, F. E. C. (1987). Third-order nonlinear acoustic inbstabilities in combustion chambers, Part I: longitudinal modes. AIAA Paper 87-1873,

    Google Scholar 

  • Yang, V., Sinha, A. and Fung, Y. T. (1992). State-feedback control of longitudinal combustion instabilities. Journal of Propulsion 8, 66–73.

    Article  Google Scholar 

  • Yu, K., Trouve, A. and Candel, S. (1991). Combustion enhancement of a premixed flame by acoustic forcing with emphasis on role of large-scale vortical structures. AIAA Paper 91-0367.

    Google Scholar 

  • Zinn, B. T. (1986). Pulsating combustion. In Advanced combustion methods. Weinberg, F. J. New York: Academic Press,

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Candel, S., Huynh, C., Poinsot, T. (1996). Some Modeling Methods of Combustion Instabilities. In: Culick, F., Heitor, M.V., Whitelaw, J.H. (eds) Unsteady Combustion. NATO ASI Series, vol 306. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1620-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1620-3_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7223-6

  • Online ISBN: 978-94-009-1620-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics