Skip to main content

Unsteady Flames and the Rayleigh Criterion

  • Chapter
Unsteady Combustion

Part of the book series: NATO ASI Series ((NSSE,volume 306))

Abstract

The basic principles associated with unsteady flames coupled by pressure waves are reviewed in this paper. The various modes of oscillations and sources of instability which may arise in a combustion system are briefly described, together with the Rayleigh criterion for heat-driven oscillations. The applicability of this criterion to explain situations of practical interest, such as a Rijke pipe and a pulse combustor, is discussed and its experimental verification is analysed. This is achieved on the basis of simultaneous measurements of the fluctuations of sound pressure level and of signatures of the rate of change of heat release, which confirm that the stability of the pulsating operation of practical combustors is obtained by releasing and removing energy during each cycle of operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Barr, P.K. and J.O. Keller (1994) “Premixed combustion in an oscillating/resonant flow field. Part III: the importance of flame extinction by fluid dynamic strain”, Proceedings of the International Symposium on Pulsating Combustion, August.

    Google Scholar 

  • Barrère, M. and Williams, F.A. (1969) “Comparison of combustion instabilities found in various types of combustion chambers”. Twelfth Symp. (Intl.) on Combustion, The Combustion Institute, pp. 169–181.

    Google Scholar 

  • Beyler, C.L. and Gouldin, F.C. (1981) “Flame structure in a swirl stabilised combustor inferred by radiant emission measurements”. Eighth Symp. (Intl.) on Combustion, The Combustion Institute, pp. 1011–1019.

    Google Scholar 

  • Bloxsidge, G.J., Dowling, A.P. and Langhorne, P.J. (1988) “Reheat buzz: an acoustically coupled combustion instability. Part 2: theory”. J. Fluid Mech., 193, pp. 445–473.

    Article  Google Scholar 

  • Candel, S.M. (1992) “Combustion instabilities coupled by pressure waves an their active control”. Twenty Fourth Symp. (Intl.) on Combustion, The Combustion Institute, pp. 1277–1296.

    Google Scholar 

  • Carrier, G.F. (1955) “The mechanics of a Rijke tube”. Quart. Appl. Math., 12, pp. 383–395.

    MathSciNet  MATH  Google Scholar 

  • Carvalho, J.A. Jr., Ferreira, M.A., Bressan, C. and Ferreira, J.L.G. (1989). “Definition of heater location to drive maximum amplitude acoustic oscillations in a Rijke tube”. Combust. and Flame, 76, pp. 17–27.

    Article  Google Scholar 

  • Chu, B.T. (1956) “Stability of systems containing a heat source — The Rayleigh Criterion”. NACA RM 56D27.

    Google Scholar 

  • Crocco, L. (1965) “Theoretical studies on liquid-propellant rocket instability”. Tenth Symp. (Intl) on Combustion, The Combustion Institute, pp. 1101–1128.

    Google Scholar 

  • Culick, F.E.C. (1987) “A note on Rayleigh’s criterion”. Combust. Sci and Tech., 56, pp. 159–166.

    Article  Google Scholar 

  • Culick, F.E.C. (1988) “Combustion instabilities in liquid-fueled propulsion systems: an overview”. A GARD Conference on Combustion Instabilities in Liquid-fuelled Propulsion Systems.

    Google Scholar 

  • Dec, J.E., Keller, J.O. and Arpaci, V.S. (1992) “Heat transfer enhancements in the oscillating turbulent flow of a pulse combustor tail pipe”. Int. J. Heat Mass Transfer, 35, (9), pp. 2311–2325.

    Article  Google Scholar 

  • Fernandes, E.C. (1991) “Stability and structure of turbulent flames confined in axisymmetric geometries”. Ms.C. Thesis, Mech. Engng. Department, Instituto Superior Tecnico, Technical University of Lisbon. (In Portuguese)

    Google Scholar 

  • Gaydon, A.G. and Wolfhard, H.G. (1979) Flames — their structure radiation and temperature, Ed. Chapman and Hall, Fourth Edition, London.

    Google Scholar 

  • Gutmark, E., Parr, T.P., Hanson-Parr, D.M. and Schadow, K.C. (1989) “On the role of large and small-scale structures in combustion control”. Combust. Sci. and Tech., 66, pp. 107–126.

    Article  Google Scholar 

  • Gutmark, E., Schadow, K.C., Sivasegaram, S. and Whitelaw, J.H. (1991) “Interaction between fluid-dynamic s and acoustic instabilities in combusting flows”. Combust. Sci. and Tech., 79, pp. 161–170.

    Article  Google Scholar 

  • Harije, D.J. and Reardon, F.H. (1972) “Liquid propellant rocket instability”. NASA SP-194.

    Google Scholar 

  • Heitor, M.V., Taylor, A.M.P.K. and Whitelaw, J.H. (1984) “Influence of confinement on combustion instabilities of premixed flames stabilised on axisymmetric baffles”. Combust. and Flame, 57, pp. 109–121.

    Article  Google Scholar 

  • Hendricks, E., Sivasegaram, S. and Whitelaw, J.H. (1992) “Control of oscillation in ducted premixed flames”. Proceedings of IUTAM Symposium on the Aerothermodynamics of Combustors. Edited by R.S. Lee, J.H. Whitelaw and T.S. Wung, Springer Verlag.

    Google Scholar 

  • Katsuky, M., Mizutani, Y., Chikami, M. and Kittaka, T. (1986) “Sound emission from a turbulent flame”. Twenty-first. Symp. (Intl.) on Combustion, The Combustion Institute, pp. 1543–1550.

    Google Scholar 

  • Keller, J.O. and Hongo, I. (1990) “Pulse combustion: the mechanism of NOx production”. Combust. and Flame, 80, pp. 219–237

    Article  Google Scholar 

  • Keller, J.O. Vaneveld J., Korschelt D., Ghonem A.F, J., Daily J. W and Oppenheim, A.K. (1982) “Mechanism of instabilitites in turbulent combustion leading to flashback”. AIAA Journal, 20, pp. 254–262.

    Article  Google Scholar 

  • Keller, J.O., Bramlette, T., Dec, J.E. and Westbrook, C.K. (1989) “Pulse combustion: the importance of characteristic times”. Combust. and Flame, 75, pp. 33–44.

    Article  Google Scholar 

  • Keller, J.O., P.K. Barr, R.S. Gemmen (1994) “Premixed combustion in a periodic flow field. Part I: experimental investigations”. Combust. and Flame, in press.

    Google Scholar 

  • Keller, J.O., Saito, K. (1987) “Measurements of the combusting flow in a pulse combustor”. Combust. Sci. and Tech., 53, pp. 137–163.

    Article  Google Scholar 

  • Keller, J.O., Smith, L, Dibble, R.W. (1992) “Phase resolved PLIF measurements of CH in a strongly oscillating flow field”. Poster presentation at the Twenty-Fourth Symp. (Intl.) on Combustion, Sydney, Australia.

    Google Scholar 

  • Keller, J.O. and Westbrook, C.K. (1986) “Response of a pulse combustor to changes in fuel composition”. Twenty-first Symp. (Intl.) on Combustion, The Combustion Institute, pp. 547–555.

    Google Scholar 

  • Kotake, S. and Takamoto, K. (1990) “Combustion noise: effects of the velocity turbulence of unburned mixture”. Journal of Sound and Vibration, 139, (1). pp. 9–20.

    Article  Google Scholar 

  • Langhorne, P.J. (1988) “Reheat buzz: an acoustically coupled combustion instability. Part 1 — Experiment”. J. Fluid Mech, 193, pp. 417–443.

    Article  Google Scholar 

  • Libby, P.A. and Williams, F.A. (1994) Turbulent Reacting Flows. Academic Press, New York.

    MATH  Google Scholar 

  • Mandarame, H. (1981) “Thermally induced acoustic oscillations in a pipe”. Bull. JSME, 24, pp. 1626– 1633.

    Google Scholar 

  • Mansour, M.N., Durai-Swamy, K., Chandran, R.R. and Duqum, J.N. (1991) “Pulse combustion systems for commercial, industrial and gas turbine applications”. Proceedings of Symp. (Intl.) on Pulsating Combustion, Sponsored by Sandia National Laboratories and the Gas Research Institute, Monterey, California.

    Google Scholar 

  • Margolis, S.B. (1993) “Nonlinear stability of combustion-driven acoustic oscillations in resonance tubes”. J. Fluid Mech., 253, pp. 67–103.

    Article  MATH  Google Scholar 

  • Matsumoto, R., Nakajima, T., Kimoto, K., Noda, S. and Maeda, S. (1982) “An experimental study on low frequency oscillation and flame-generated turbulence in premixed/diffusion flames”. Combust. Sci. and Tech., 27, pp. 103–111.

    Article  Google Scholar 

  • McIntosh, A.C. (1991) “Pressure disturbances of different length scales interacting with conventional flames”. Combust. Sci. and Tech., 75, pp. 416–424.

    Article  Google Scholar 

  • McManus, K., Poinsot, T. and Candel, S. (1993) “A review of active control of combustion instability”. Prog. Energy Combust., Sci, 19, pp. 1–29.

    Article  Google Scholar 

  • Oran, E.S., Gardner, J.H. (1985) “Chemical-acoustic interactions in combustion systems”. Prog. Energy Combust., Sci, 11, pp. 253–276.

    Article  Google Scholar 

  • Ozer, R.W. (1993) “Pulse combustion drying”, Proceedings of the Workshop on Pulsating Combustion and its Applications. Lund University, Lund, Sweden.

    Google Scholar 

  • Perry, R.B., and Culick, F.E.C. (1974) “Measurements of wall heat transfer in the presence of large amplitude combustion-driven oscillations”. Combust. Sci. and Tech., 9, pp. 49–53.

    Article  Google Scholar 

  • Price, R.B., Hurle, I.R. and Sulden, I.M. (1969) “Optical studies of the generation of noise in turbulent flames”. Twelfth Symp. (Intl.) on Combustion, The Combustion Institute, pp. 1093–1102.

    Google Scholar 

  • Putnam, A.A. (1971) Combustion driven oscillations in industry. Elsevier, New York.

    Google Scholar 

  • Putnam, A.A. and Dennis, W.R. (1953) “Organ-pipe oscillations in a flame-filled tube”. Fourth Symp. (Intl.) on Combustion,The Combustion Institute, pp. 566–574.

    Google Scholar 

  • Putnam, A.A., Belles, F.E. and Kentfield, J.A.C. (1986) “Pulse combustion”. Prog. Energy and Combust. Sci., 12, pp. 43–79.

    Article  Google Scholar 

  • Rabhan, A.B., Dubrov, E., Alvey, D.A., Daniel, B.R. and Zinn, B.T. (1991) “Industrial pulse combustor development and its applications in spray dryers and cement calciners”. GRI-90/0203, Final Rept. May 1986–Sept. 1990, Gas Research Inst.

    Google Scholar 

  • Ramachandra, M.K. and Strahle, W.C. (1983). “Acoustic signature from flames as a combustion diagnostic tool”. AIAA Journal, 21, (8), pp. 1118–1125.

    Google Scholar 

  • Rayleigh, L.J.W.S. (1878) “The explanation of certain acoustic phenomena”. Doctoral Thesis, Ecole Centrale Paris, Chatenay-Malabry.

    Google Scholar 

  • Reuter, D., Daniel, B.R., Jagoda, J. and Zinn, B.T. (1986) “Periodic mixing and combustion processes in gas fired pulsating combustors”. Combust. and Flame, 65, pp. 281–290,

    Article  Google Scholar 

  • Sankar, S.V., Jagoda, J.I. and Zinn, B.T. (1990) “Oscillatory velocity response of premixed flat flames stabilized in axial acoustic fields”. Combust. and Flame, 80, pp. 371–384.

    Article  Google Scholar 

  • Schadow, K.C. and Gutmark, F. (1992) “Combustion instabilities related to vortex shedding in dump combustors ad their passive control”. Prog. Energy Combust. Sci., 18, pp. 117–132.

    Article  Google Scholar 

  • Schadow, K.C., Gutmark, E., Parr, T.P. and Wilson, K.J. (1989) “Large-scale coherent structures as drivers of combustion Instability”. Combust. Sci. and Tech., 64, pp. 167–186.

    Article  Google Scholar 

  • Sivasegaram, S. and Whitelaw, J.H. (1991). “The influence of swirl on oscillations in ducted premixed flames”. Combust. and Flame, 85, pp. 195–205.

    Article  Google Scholar 

  • Sivasegaram, S. and Whitelaw, J.H. (1993) “Active control of oscillations in combustors with several frequency modes”. ASME, DSC-38, pp. 69–76.

    Google Scholar 

  • Stewart, C.R., Lemineux, P.M. and Zinn, B.T. (1991) “Application of pulse combustion to solid and hazardous waste incineration”. Proc. Symp. (Int.) on Pulse Combustion, Aug. 6–8, Monterey, California.

    Google Scholar 

  • Toong, T., Salant, R.F., Stopford, J.M. and Anderson, G.Y. (1965) “Mechanisms of combustion instability”. Twentieth Symp. (Intl.) on Combustion, The Combustion Institute, pp. 1301–1313.

    Google Scholar 

  • Torres, E.A., Victório, J.R.S., Ferreira, M.A. and Carvalho, J.A. (1992) “Pulsating combustion of palm oil fruit bark”. Fuel, 71, pp. 257–261.

    Article  Google Scholar 

  • Willis, J., Cadou, C., Karagozian, A. and Smith, O. (1991) “Diagnostic methods for visualization of heat release in unsteady combustion”. Paper WSS/CI 91-68, presented at the 1991 Fall Meeting of the Western States Section/The Combustion Institute. October, 14–15, 1991, Los Angeles-CA, USA.

    Google Scholar 

  • Zinn, B.T. (1986) “Pulsating combustion”. In: Advanced combustion methods, ed.. Weinberg, F.J., Academic Press.

    Google Scholar 

  • Zinn, B.T. (1992) “Pulse combustion: recent applications and research issues”. Twenty-Fourth Symp. (Intl.) on Combustion, The Combustion Institute, pp. 1297–1305.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Fernandes, E.C., Heitor, M.V. (1996). Unsteady Flames and the Rayleigh Criterion. In: Culick, F., Heitor, M.V., Whitelaw, J.H. (eds) Unsteady Combustion. NATO ASI Series, vol 306. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1620-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1620-3_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7223-6

  • Online ISBN: 978-94-009-1620-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics