Skip to main content

Flows with cylindrical symmetry

  • Chapter
Electrically Induced Vortical Flows

Part of the book series: Mechanics of Fluids and Transport Processes ((MFTP,volume 9))

  • 124 Accesses

Abstract

A new approach to the study of electrically induced flows is opened by the use of cylindrical coordinates. First, substantially more variants of axisymmetric electric current distributions (compared to the spherical case) are available, which, at least partly, have immediate practical implications. Second, in cylindrical coordinates there are several methods for the separation of variables in the Navier-Stokes and Maxwell equations that allow us to construct solutions in a similarity form. In choosing the coordinate system the role played by the geometrical form of the liquid conductor domain is by no means unimportant; a cylindrical form often occurs in practical high-current technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdullah A. J.: Some aspects of the dynamics of tornadoes. Month. Weather Rev. (1955), No. 83, pp. 83–88.

    Article  ADS  Google Scholar 

  2. Axford W. I.: Axisymmetric stagnation point flow in magnetohydrodynamics. Appl. Sci. Research (1961), 9, sect. B, No. 1, pp. 213–229.

    Article  MATH  Google Scholar 

  3. Bacon F.: Natural history of winds — Extraordinary winds and sudden blasts. In: 1622. The Works of Francis Bacon, Carey and Hart. Philadelphia, 1844, vol. 3, p. 449.

    Google Scholar 

  4. Batchelor G. K.: An Introduction to Fluid Dynamics. Cambridge at the University Press, 1970.

    Google Scholar 

  5. Bojarevičs V. V. and Millere R. P.: Electrovortex flow in Karman’s class. 10th Riga Conference on MHD. Salaspils, 1981, vol. 1, pp. 157–158 (In Russian).

    Google Scholar 

  6. Bojarevičs V. V. and Sharamkin V. I.: MHD flow due to the discharge of an electric current in an axially symmetric layer of finite thickness. Magnitnaya Gidrodinamika (1977), No. 2, pp. 55–60.

    Google Scholar 

  7. Bojarevičs V. V., Freibergs J. Ž., Shilova E. I., and Shcherbinin E. V.: Electro-Vortex Flows. Riga: Zinatne, 1985 (In Russian).

    Google Scholar 

  8. Brady J. F. and Acrivos A.: Steady flow in a channel or tube with an accelerating surface velocity. J. Fluid Mech. (1981), 112, pp. 127–150.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Brady J. F.: Flow development in a porous channel and tube. Phys. Fluids (1984), 27(5), pp. 1061–1067.

    Article  MathSciNet  ADS  Google Scholar 

  10. Braham R. R.: The water and energy budgets of the thunderstorm and their relation to thunderstorm development. J. Meteorol. (1952), No. 9, pp. 237–243.

    Google Scholar 

  11. Brooks E. M.: The tornado-cyclone. Weatherwise (1949), 2, pp. 32–33.

    Article  Google Scholar 

  12. Bucenieks I. E., Petersons D. E., Sharamkin V. I., and Shcherbinin E. V.: MHD flows caused by diverging currents passing through closed volumes of liquid. Magnitnaya Gidrodinamika (1976), No. l, pp. 92–97.

    Google Scholar 

  13. Cham T. S.: The laminar boundary layer of a source and vortex flow. Aeronautical Quart. (1971), 22(2), pp. 196–206.

    Google Scholar 

  14. Glazov O. A.: Rotation of conducting liquid under the stationary disc in the presence of magnetic field. Magnitnaya Gidrodinamika (1967), No. 2, pp. 75–80.

    Google Scholar 

  15. Goldshtik M. A.: A class of exact solutions of Navier-Stokes equations. Zhurnal Prikladnoj Mekhaniki i Tekhnicheskoj Fiziki (1966), No. 2, pp. 106–109.

    Google Scholar 

  16. Goldshtik M. A.: Vortex Flows. Novosibirsk: Nauka, 1981 (In Russian).

    Google Scholar 

  17. Golubinskij A. A. and Sychev V. V.: About a similarity solution of Navier-Stokes equations. Uchenye Zapiski TSAGI (1976), 7(6), pp. 11–17.

    ADS  Google Scholar 

  18. Greenspan H. P.: The Theory of Rotating Fluids. Cambridge at the University Press, 1968.

    MATH  Google Scholar 

  19. Gribben R. J.: Magnetohydrodynamic stagnation-point flow. Quart. J. Mech. Appl. Math. (1965), 18(3), pp. 357–384.

    Article  MathSciNet  MATH  Google Scholar 

  20. Gutman L. N.: Theoretical Model of Tornado. Izvestiya Akademii Nauk SSSR, Ser. Geophys. (1957), N 1, pp. 79–93.

    Google Scholar 

  21. Gutman L. N.: Introduction to the Nonlinear Theory of Mesometeorological Processes. Leningrad: Gidrometeoizdat, 1969 (In Russian).

    Google Scholar 

  22. Hare R.: On the causes of the tornado or waterspout. Amer. J. Sci. Arts (1837), 32, pp. 153–158.

    Google Scholar 

  23. Intense Atmospheric Vortices. Ed. by Bengtsson L., Lighthill J. Berlin-Heidelberg: Springer Verlag, 1982.

    Google Scholar 

  24. Kakutani T.: Axially symmetric stagnation-point flow of an electrically conducting fluid under transverse magnetic field. J. Phys. Soc. Jpn. (1960), 15(4), pp. 688–695.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Karman Th.: Über laminare und turbulente Reibung. ZAMM (1921), 1, S. 233–251.

    Article  ADS  Google Scholar 

  26. Kislykh V. I. and Smulskij I. I.: To the hydrodynamics of vortex chamber. Inzhenerno-Fizicheskij Zhurnal (1978), 35(3), pp. 543–544.

    Google Scholar 

  27. Lentini M. and Keller H. B.: Computation of Karman swirling flows. Lecture Notes in Computer Sci. Ed. by Goos G., Hartmanis J., 1979, vol. 76, pp. 89–100.

    Google Scholar 

  28. Lewellen W. S. and King W. S.: Boundary-layer similarity solution for rotating flows with and without magnetic interaction. Phys. Fluids (1964), 7(10), pp. 1674–1680.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Lin C. C: Note on a class of exact solutions in magnetohydrodynamics. Arch. Rational Mech. Anal. (1958), 1(4), pp. 391–395.

    MathSciNet  ADS  MATH  Google Scholar 

  30. Loitsyanskij L. G.: Laminar Boundary Layer. Moscow: GIFML, 1962 (In Russian).

    Google Scholar 

  31. Lucretius: On Nature of Objects. Part I. Moscow: Akademiya Nauk SSSR, 1946 (Russian translation).

    Google Scholar 

  32. Malbakhov V. M.: Investigation of tornado structure. Izvestiya Akademii Nauk SSSR. Fizika Atmosfery i Okeana (1972), 8(1), pp. 17–28.

    Google Scholar 

  33. Malbakhov V. M. and Gutman L. N.: Nonstationary problem of mesoscale atmospheric vortices with vertical axis. Idem (1968), 4(6), pp. 586–598.

    Google Scholar 

  34. Meksyn D.: Integration of the boundary-layer equations. Proc. Roy. Soc. London, ser. A (1956), 237(1211), pp. 543–559.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Mikhailov A.O.: About Storms. MorskojSbornik, SPb., 1888, No. 3, pp. 1–37.

    Google Scholar 

  36. Millere R. P., Sharamkin V. I., and Shcherbinin E. V.: Effect of longitudinal magnetic field on electrovortex flow in a cylindrical volume. Magnitnaya Gidrodinamika (1980), No. 1, pp. 81–85.

    Google Scholar 

  37. Millsaps K. and Nydahl J. E.: Heat transfer in a laminar cyclone, ZAMM (1973), 53, pp. 241–246.

    Article  MATH  Google Scholar 

  38. Nalivkin D. V.: Hurricanes, Storms and Tornadoes. Leningrad: Nauka, 1963 (In Russian).

    Google Scholar 

  39. Nanbu K.: Vortex flow over a flat surface with suction. AIAA J. (1971), 9(8), pp. 1642–1645.

    Article  ADS  Google Scholar 

  40. Pao H. P.: Magnetohydrodynamic Flows over a Rotating Disc. AIAA J. (1968), 6(7).

    Google Scholar 

    Google Scholar 

  41. Peltier J. C. A.: Translation by Robert Hare. Amer. J. Sci. Arts (1840), 38, p. 73.

    Google Scholar 

  42. Petrovskij I. G.: Lectures in the Theory of Ordinary Differential Equations. Moscow: Nauka, 1964.

    Google Scholar 

  43. Reznikov B. I.: A method to integrate asymptotically the equations of laminar boundary layer. Aerophysical Investigations of Supersonic Flows. Ed. by Dunaev Yu. A. Leningrad: Nauka, 1967, pp. 284–300 (In Russian).

    Google Scholar 

  44. Reznikov B. I. and Smyslov Yu. N.: Magnetohydrodynamic flow in the vicinity of critical point in purely azimuthal magnetic field. Izvestiya Akademii Nauk SSSR. Mekhanika Zhidkosti i Gaza (1967), No. 4, pp. 3–8.

    Google Scholar 

  45. Sandler V. Yu.: Numerical study of temperature and velocity fields in a slag pool. Magnitnaya Gidrodinamika (1982), No. 2, pp. 113–119.

    Google Scholar 

  46. Schlichting H.: Laminare Strahlungsbreitung. ZAMM (1933), 13, S. 260–263.

    Article  MATH  Google Scholar 

  47. Schlichting H.: Boundary Layer Theory. New York: McGraw-Hill, 1960.

    MATH  Google Scholar 

  48. Shcherbinin E. V.: Viscous Fluid Jet Flows in Magnetic Field. Riga: Zinatne, 1973 (In Russian).

    Google Scholar 

  49. Shilova E. I. and Shcherbinin E. V.: Some aspects of theoretical study of MHD flow in a diffuser. Magnitnaya Gidrodinamika (1971), No. 1, pp. 11–17.

    Google Scholar 

  50. Shilova E. I. and Shcherbinin E. V.: MHD model of weak whirlwind. Magnitnaya Gidrodinamika (1974), No. 2, pp. 77–86.

    Google Scholar 

  51. Sychev V. V.: On viscous electrically conducting fluid motion under the action of rotating disc in the presence of magnetic field. Prikladnaya Matematika i Mekhanika (1960), 24, No. 5, pp. 906–908.

    MathSciNet  Google Scholar 

  52. Smirnov E. M.: Similarity solutions of Navier-Stokes equations for a swirling flow of incompressible fluid in a circular tube. Idem (1981), 45, No. 5, pp. 833–839.

    Google Scholar 

  53. Smyslov Yu. N. and Shcherbinin E. V.: Nonlinear magnetohydrodynamic model of tornado. Problems of Mathematical Physics. Leningrad: Nauka, 1976, pp. 271–282 (In Russian).

    Google Scholar 

  54. Sozou C.: Electrical discharges and intense vortices. Proc. Roy. Soc. London (1984), A392, pp. 415–426.

    ADS  Google Scholar 

  55. Srivastava A. C. and Sharma S. K.: The effect of a transverse magnetic field on the flow between two infinite discs — one rotating and the other at rest. Bull. Acad. Polon. Sci., Ser. Sci. Techn. (1961), 9(11), pp. 639–645.

    MATH  Google Scholar 

  56. Uman M. A.: Lightning. New York: McGraw-Hill Book Co., 1969.

    Google Scholar 

  57. Van Dyke M.: Semi-analytical applications of the computer. Fluid Dynamics Trans. Ed. by W. Fiszdon et al., Warszawa, 1978, vol. 9, pp. 305–320.

    Google Scholar 

  58. Vlasyuk V. Kh.: Effect of melting electrode radius on the electrically induced vortical flow in a cylindrical container. Magnitnaya Gidrodinamika (1987), No. 4, pp. 101–106.

    Google Scholar 

  59. Vonnegut B.: Electrical theory of tornadoes. J. Geophys. Research (1960), 65(1), pp. 203– 212.

    Article  ADS  Google Scholar 

  60. Wegener A.: Wind und Wassershosen in Europa. In: Die Wissenschaft. Braunschweig, 1917, Bd. 60, S. 301.

    Google Scholar 

  61. Yuan S. W., Finkelstein A. B.: Laminar pipe flow with injection and suction through a porous wall. Trans. ASME (1956), 78(4), pp. 719–724.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bojarevičs, V., Freibergs, J.A., Shilova, E.I., Shcherbinin, E.V. (1989). Flows with cylindrical symmetry. In: Electrically Induced Vortical Flows. Mechanics of Fluids and Transport Processes, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1163-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1163-5_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7017-1

  • Online ISBN: 978-94-009-1163-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics