Skip to main content

Part of the book series: Mechanics of Fluids and Transport Processes ((MFTP,volume 9))

Abstract

The magnetic hydrodynamics of an incompressible fluid, in addition to the usual hydrodynamic forces (inertial, viscous, and pressure gradient), take into account the electromagnetic force, which, in fact, sets magnetohydrodynamics apart as an individual branch of general hydrodynamics. The inclusion of additional force is not only an efficient tool to control the flow, but also leads to a variety of purely hydrodynamic phenomena which are not realizable by the usual methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chow C.-Y.: Flow around a nonconducting sphere in a current-carrying fluid. Phys. Fluids (1966), 9(5), pp. 933–936.

    Article  ADS  Google Scholar 

  2. Crane J. S. and Pohl H. A.: A study of living and dead yeast cells using dielectrophoresis. J. Electrochem. Soc. (1968), No. 6, pp. 584–586.

    Google Scholar 

  3. Dijkhuis G. C: Threshold current for fireball generation. J. Appl. Phys. (1982), 53(5), pp. 3516–3519.

    Article  ADS  Google Scholar 

  4. Electromagnetic guns and launchers. Phys. Today (1980), No. 12, pp. 1921.

    Google Scholar 

  5. Finkelnburg W. and Maecker H.: Electrische Bögen und Thermisches Plasma. Handbuch der Physik, Bd. XXII, S. 254–444, 1956.

    Google Scholar 

  6. Gelfgat Yu. M., Lielausis O. A., and Shcherbinin E. V.: Liquid Metal under the Action of Electromagnetic Forces. Riga: Zinatne, 1976 (In Russian).

    Google Scholar 

  7. Gibson E. G.: The Quiet Sun. Scientific and Technical Information Office National Aeronautics and Space Administration. Washington, 1973.

    Google Scholar 

  8. Grozdowskij G. L. et al.: Axisymmetric meridional flow of conducting fluid. Izvestiya Akademii Nauk SSSR. Mekhanika i Mashinostroenie (1960), No. 1, pp. 41–46.

    Google Scholar 

  9. Hagyard H., Low B. C., and Tandberg-Hanssen E.: On the presence of electric currents in the Solar atmosphere. Solar Phys. (1981), 73, pp. 257–268.

    Article  ADS  Google Scholar 

  10. Jones G. R. and Fang M. T. C.: The physics of high-power arcs. Rep. Progr. Phys. (1980), 43, pp. 1415–1465.

    Article  ADS  Google Scholar 

  11. Kotov V. A.: Rotation of sunspot material. Izvestiya Krymskoj Astrofizicheskoj Observatorii (1976), 34, pp. 184–200.

    ADS  Google Scholar 

  12. Lamb H.: Hydrodynamics. Cambridge University Press, Cambridge, 1957.

    Google Scholar 

  13. Lundquist S.: On the hydromagnetic viscous flow generated by a diverging electric current. Ark. Fys. (1969), 40, No. 5, pp. 89–95.

    Google Scholar 

  14. Maecker H.: Plasmaströmungen in Lichtbögen infolde eigenmagnetischer Kompression. Ztsch. Phys. (1955), Bd. 141, S. 198–216.

    Article  ADS  Google Scholar 

  15. Milne-Thompson L. M.: Theoretical Hydrodynamics, 4th ed. Macmillan, New York, 1960.

    Google Scholar 

  16. Moffatt H. K.: Magnetic Field Generation in Electrically Conducting Fluids. Cambridge University Press, Cambridge, 1978.

    Google Scholar 

  17. Morozov A. I.: Physical Principles of Electrical Space Propulsion Engines. Moscow: Atomizdat, 1978 (In Russian).

    Google Scholar 

  18. Northrup E. F.: Some newly observed manifestations of forces in the interior of an electric conductor. Phys. Rev. (1907), 24, pp. 474–497.

    ADS  Google Scholar 

  19. Potemra T. A.: Current systems in the Earth’s magnetosphere. Rev. Geophys. Space Phys. (1979), 17(4), pp. 640–656.

    Article  ADS  Google Scholar 

  20. Ryan R. T. and Vonnegut B.: Miniature whirlwinds produced in the laboratory by high-voltage electrical discharges. Science (1970), 168, pp. 67–69.

    Article  Google Scholar 

  21. Serdyuk G. B.: Magnetohydrodynamic effects in an electrical arc. Magnitnaya Gidrodinamika (1966), No. 4, pp. 136–146.

    Google Scholar 

  22. Shercliff J. A.: Fluid motion due to an electric current source. J. Fluid Mech. (1970), 40(2), pp. 241–250.

    Article  ADS  MATH  Google Scholar 

  23. Shilov V. N. and Estrela-Leopis V. R.: Theory of suspension spherical particles motion in a nonuniform electrical field. In: Contact Forces in Thin Films and Dispersions. Moscow: Nauka, 1972 (In Russian).

    Google Scholar 

  24. Shilova E. I.: Possible manifestations of electrically induced vortical flow in dielectrophoresis. 9th Riga Conference on MHD, vol. 1. Salaspils, 1978, pp. 158–159 (In Russian).

    Google Scholar 

  25. Shilova E. I. and Shcherbinin Eh. V.: MHD vortex flow in a cone. Magnitnaya Gidrodinamika (1971), No. 2, pp. 33–38.

    Google Scholar 

  26. Sozou C.: On fluid motions induced by an electric current source. J. Fluid Mech. (1971), 46(1), pp. 25–32.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Tidman D. A. and Goldstein S. A.: Acceleration of projectiles to hypervelocity using a series of imploded annular plasma discharges. J. Appl. Phys. (1980), 51(4), pp. 1975–1983.

    Article  ADS  Google Scholar 

  28. Uberoi M. S.: Magnetohydrodynamics at small magnetic Reynolds numbers. Phys. Fluids (1962), 5(4), pp. 401–406.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Wienecke K.: Uber das Geschwindigkeitsfeld der Hochstromkohlebogensäule. Ztschr. Phys. (1955), 143(1), S. 129–140.

    Google Scholar 

  30. Yantovsky Ye. I. and Apfelbaum M. S.: About the force from needle electrode in a slightly conducting liquid dielectric and simulated fluid flows. Magnitnaya Gidrodinamika (1977), No. 4, pp. 73–80.

    Google Scholar 

  31. Zhigulev V. N.: On the ejection effect due to an electrical discharge. Doklady Akademii Nauk SSSR (1960), 130(2), pp. 280–283.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bojarevičs, V., Freibergs, J.A., Shilova, E.I., Shcherbinin, E.V. (1989). Introduction. In: Electrically Induced Vortical Flows. Mechanics of Fluids and Transport Processes, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1163-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1163-5_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7017-1

  • Online ISBN: 978-94-009-1163-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics