Skip to main content

Biotechnology for Basic Studies and Breeding of Triticale

  • Chapter
Triticale: Today and Tomorrow

Part of the book series: Developments in Plant Breeding ((DIPB,volume 5))

Abstract

Conventional breeding methods have, over the years, resulted in significant improvements in the yield, disease and quality of the cereal crops and in the future continued progress can be expected. I recent years, however, the emergence of plant biotechnology, based on recombinant DNA methodologies and on in vitro genetic manipulation of cells, has resulted in the development of several new techniques which will have application to triticale improvement.

We will report on the progress with cell biological and molecular approaches to improve cereal crops in general and specifically triticale. First transgenic triticale plants have been obtained by microprojectile bombardment of scutellar tissue with a plasmid carrying the gus- and bar-gene coding for glucuronidase activity and phosphinotricin (BASTA) resistance, respectively. The screenable and selectable genes are considered marker genes and will be used for further improvement of transformation efficiency in triticale. Subsequent experiments are aiming for the transfer of genes improving disease resistance, stress tolerance, and other quality characters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Davey MR, Rech EL, Mulligan BJ. Direct DNA transfer to plant cells. Plant Mol Biol 1989; 13: 273–285.

    Article  PubMed  CAS  Google Scholar 

  2. Lörz H, Göbel E, Brown P. Advances in tissue culture and progress towards genetic transformation of cereals. Plant Breeding 1988; 100: 1–25.

    Article  Google Scholar 

  3. Sosinov A, Lukjanjuk S, Ignatova S. Anther cultivation and induction of haploid plants in Triticale. Z Pflanzenzüchtg 1981; 86: 272–285.

    Google Scholar 

  4. Charmet G, Bernard S. Diallel analysis of androgenic plant production in hexaploid Triticale (x.triticosecale, Wittmack). Theor Appl Genet 1984; 69: 55–61.

    Article  Google Scholar 

  5. Bernard S. In vitro androgenesis in hexaploid Triticale: determination of physical conditions increasing embryoid formation and green plant production. Z. Pflanzenzüchtg 1980;85:308–321.

    Google Scholar 

  6. Kozdój J, Zimny J. Microspore development stages in chilled and unchilled anthers of Triticale (x Triticosecale Wittmack). Bul Pol Acad Sci 1993; 2 /93: 108–116.

    Google Scholar 

  7. Bernard S. Etude de quelques facteurs contribuant a la reussite de l’ androgenese par culture d’antheres in vitro chez le Triticale hexaploide. Ann Plantes 1977; 27: 639–635.

    Google Scholar 

  8. Chu CC. The N6 medium and its applications to anther culture of cereal crops. Proceedings of the Symposium on Plant Tissue Culture. Peking, May 25–30–1978. Science Press Peking 1978.

    Google Scholar 

  9. Gamborg OL, Miller RA, Ojima K. Nutrient requirements of suspension cultures of soybean root.ExpCell Res 1968: 50, 151–158.

    Article  CAS  Google Scholar 

  10. Schumann G. Untersuchungen zum Albinismus in Antherenkulturen von Triticale. Arch Züchtungsforsch Berlin 1988; 18: 2 115–122.

    Google Scholar 

  11. Eapen S, Rao PS. Plant regeneration from immature inflorescence callus cultures of wheat, rye and Triticale. Euphytica 1985; 34: 153–159.

    Article  Google Scholar 

  12. Fedak G. Chromosome Irregularities in wheat and Triticale plants regenerated from leaf base callus. Plant Breeding 1987; 99 (2): 151–154.

    Article  Google Scholar 

  13. Eapen S, Rao PS. Callus induction and plant regeneration from immature embryos of rye and triticale. Plant Cell Tissue and Organ Culture 1982; 1: 221–227.

    Article  CAS  Google Scholar 

  14. Nakamura Ch, Keller WA. Callus proliferation and Plant regeneration from immature embryos of hexaploid Triticale. Z Pflanzenzüchtg 1982; 91: 137–160.

    Google Scholar 

  15. Stolarz A, Lörz H. Somatic embryogenesis, in vitro manipulation and plant regeneration from immature embryos of hexaploid Triticale (x Triticosecale Wittmack). Z. Pflanzenzüchtg 1986a; 96: 353–362.

    Google Scholar 

  16. Zimny J, Rybczyñski H. Somatic embryogenesis of Triticale. In: Genetic Manipulations in Plant Breeding, 1986 Symposium Procceedings Berlin (West) 1985.

    Google Scholar 

  17. Bebeli P, Karp A, Kaltsikes PJ. Plant regeneration and somaclonal variation from cultured immature embryos of sister lines of rye and triticale differing in their content of heterohromatin. 1. Morphogenetik response. Theor Appl Genet 1988; 75: 929–936

    Google Scholar 

  18. Zimny J, Lörz H. High frequency of somatic embryogenesis and plant regeneration of rye (Swale cereale L.). Z Pflanzenzüchtng 1989; 102: 89–100.

    Google Scholar 

  19. Sharma GC, Bello LL, Sapra VT. Genotypic differences in organogenesis from callus of ten Triticale lines. Euphytica 1980; 29: 751–754.

    Article  Google Scholar 

  20. Armstrong KC, Nakamura C, Keller WA. Karyotypic instability in tissue culture regenerants of Triticale (x Triticosecale Wittmack) cv. ‘Welsh’ from 6-month-old callus cultures. Z Pflanzenzüchtng 1983; 91: 233–245.

    Google Scholar 

  21. Jordan MC, Larter EN. Somaclonal variation in Triticale (x Triticosecale Wittmack) cv. Carman. Can J Genet Cytol 1984; 27: 151–157.

    Google Scholar 

  22. Zimny J. Genotypic dependence of the somatic embryogenesis of Triticale (x Triticosecale Wittmack),In: Science for Plant Breeding. XII Eucarpia Congress;1989 Göttingen, Germany

    Google Scholar 

  23. Murashige T, Skoog F. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 1962; 15: 473–497.

    Article  CAS  Google Scholar 

  24. Kao KN. Chromosomal behaviour in somatic hybrids of soybean - Nicotiana glaucn. Mol Gen Genet 1977; 150: 221–230.

    Article  Google Scholar 

  25. Larkin PJ, Scowcroft:Somaclonal variation - a novel source of variability from cell cultures for plant improvement. TheorApplGenet 1981; 60, 197–214.

    Google Scholar 

  26. Brettell RIS, Denis ES, Scowcroft WR, Peacock WJ. Molecular analisis of somaclonal mutant of maize alcohol dehydrogenase. Molec Gen Genet 1986; 202: 235–239.

    Article  CAS  Google Scholar 

  27. Scharen AL, Arseniuk E, Sowa W, Zimny J, Podyma W. Seedling resistance of Triticale and Triticum spp. germplasm to Septoria nodorum and S.tritici. Proceedings of the Second International Triticale Symposium, 1990; Passo Fundo, Brazil.

    Google Scholar 

  28. Ono H, Larter EN. Anther culture of Triticale. Crop Science 1976; 16: 120–122.

    Article  CAS  Google Scholar 

  29. Clapham D. Haploid Hordeum plants from anthers in vitro. Z Pflanzenzüchtg 1973; 69: 142–145.

    Google Scholar 

  30. Stolarz A, Lörz H. Somatic embryogenesis, cell and protoplast culture of Triticale (x Triticosecale Wittmack). In:Genetic Manipulation in Plant Breeding. Symposium Proceedings. 1986b Horn,Jensen,Odenbach,Schieder(eds) Walter de Gruyter and Co Berlin.

    Google Scholar 

  31. Zimny J. Somatic embryogenesis and plant regeneration of rye (Secale cereale L.) and Triticale (x Triticosecale Wittmack). In: Regulations of Plant Somatic Embryogenesis 1992 ed. by Griga, Tejklova, Sumperk-1992.

    Google Scholar 

  32. Jähne A, Lazzeri PA, Lörz H. Regeneration of fertile plants from protoplasts derived from embryogenic cell suspensions of barley (Hordeum vulgare L.). Plant Cell Rep 1991: 10: 1–6.

    Article  Google Scholar 

  33. Lührs R, Nielsen K. Microspore cultures as donor tissue for the initiation of embryogenic cell suspensions in barley. Plant Cell Tissue and Organ Culture 1992; 31: 169–178.

    Article  Google Scholar 

  34. Schmitt M. In Vitro Kultur und Protoplastenregeneration von Weizen (Triticum aestivum L.) dissertation, University of Hamburg 1993.

    Google Scholar 

  35. Krens FA, Molemdijk L, Wullems GJ, Schilperoort RA. In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature: 1982; 559–563.

    Google Scholar 

  36. Fujimura T, SakuraiM, Nagishi T, Hirose A. Regeneration of rice plants from protoplasts. Plant Tissue Culture Letters 1985; 2: 74–75.

    Google Scholar 

  37. Kyozuka J, Hayashi Y, Shimamoto Y. High frequency plant regeneration from rice protoplasts by novel nurse culture methods. Mol Gen Genet 1987; 206: 408–413.

    Article  CAS  Google Scholar 

  38. Rhodes CA, Lowe KS, Ryby KL. Plat regeneration from protoplasts isolated from embryogenic maize cell cultures. Biotechnology 1988; 6: 56–61.

    Article  Google Scholar 

  39. Prioli LM, Sondahl MR Plant regeneration and recovery of fertile plants from protoplsts of Zea mays L. Bio/Technology 1989; 7: 589–584.

    Article  Google Scholar 

  40. Shillito RD, Carswell GK, Johnsons CK, DiMaio JJ, Harms CT. Regeneration of fertile plants from protoplasts of elite inbred maize. Bio/Technology 1989; 7: 581–587.

    Article  Google Scholar 

  41. Vasil V, Redwey F, Vasil IK. Regeneration of plants from embryogenic suspension culture protoplasts of wheat (Triticum aestivum L.) Bio/Technology 1990; 8: 429–434.

    Article  Google Scholar 

  42. Yan Q, Zhang X, Shi J, Li J. Green plant regeneration from protoplsts of barley (Hordeum vulgare L.) Kexue Tongbao 1990; 35: 1581–1583.

    Google Scholar 

  43. Stolarz A. Cell and protoplast culture, Somatic embryogenesis and transformation studies in different formes of x Triticosecale Wittmack. In: Proceedings of the Second International Triticale Symposium 1990, Passo Fundo, Brazil.

    Google Scholar 

  44. Barton KA, Brill WI. Prospects in plant genetic engineering. Science 1983; 219: 67: 1–675.

    Google Scholar 

  45. Hooykaas-van Slogteren GMS, Hooykapas PJJ, Schilperoot RA. Expression of Ti plasmid genes in monocotyledonous plants infected with Agrobacterium tumefaciens. Nature 1984; 311: 763–764.

    Article  Google Scholar 

  46. Hernalsteens JP, Thia-Toong L, Schell J, Van Montagu M. An Agrobacterium-transformed cell culture from the monocot Asparagus offjcinalis. EMBO Journal 1985; 3 (13): 3039–3041

    Google Scholar 

  47. Lörz H, Backer B, Schell J Gene transfer to cereal cells mediated by protoplast transformation. Mol Gen Genet 1985; 199: 178–182.

    Article  Google Scholar 

  48. Ushimiya H, Fushmi T, Hashimoto H, Harada H, Syano K, Sugawara Y. Expression of a foreign gene in callus derived from DNA treated protoplasts of rice (Oryza sativa L.) Mol Gen Genet 1986; 204: 204–207.

    Article  Google Scholar 

  49. Fromm ME, Taylor LP, Wallbot V. Stable transformation of maize after gene-transformation by electroporation. Nature 1986; 319: 178–182.

    Article  Google Scholar 

  50. Lazzeri PA, Bretschneider R, Lührs R, Lörz H. Stable transformation of barley via PEG–induced direct DNA uptake into protoplasts. Theor Appl Genet 1991; 81: 437–444.

    Article  Google Scholar 

  51. Potrykus I. Gene transfer to plants:assessment and perspectives. Physiol Plant 1990; 79: 125–134.

    Article  CAS  Google Scholar 

  52. Stolarz A, Lörz H. Protoplast culture and transformation studies of Triticale (x Triticosecale Wittmack). Plant Cell Tissue and Organ Culture 1988; 2: 227–230.

    Article  Google Scholar 

  53. Zimny J, Rafalski A. Transformation study on Triticale protoplasts. Bull Inst Plant Breed Acclim 1993; 197: 127–132.

    Google Scholar 

  54. Sanford JC, Klein TM, Wolf ED, Allen N. Delivery of substances into cells and tissues using a particle bombardment process. J Part Sci Technol 1987; 5: 27–37.

    Article  CAS  Google Scholar 

  55. Fromm ME, Morrish F, Armstrong A, Williams R, Thomas J, Klein TM. Inheritance and expression of himeric genes in the progeny of transgenic maize plants. Bio/Technology 1990; 8: 833–839.

    Article  PubMed  CAS  Google Scholar 

  56. Cao J, Duan X, McElroy D, Wu R Regeneration of herbicide resistant transgenic rice plants following microprojectile mediated transformation of suspension culture cells. Plant Cell Rep 1992; 11: 586–591.

    Article  CAS  Google Scholar 

  57. Somers DA, Rines HW, Gu W, Kaeppler HF, Bushnell WR. Fertile transgenic oat plants. Bio/Technol 1992; 10: 1589–1594.

    Article  CAS  Google Scholar 

  58. Becker D, Bretschneider R, Lörz H. Fertile transgenic wheat from microprojectile bombardment scutellar tissue. Plant Journal 1994; 5 (2): 299–307.

    Article  PubMed  CAS  Google Scholar 

  59. Lukaszewski AJ, Curtis Ch. Transfer of the Glu-Did gene from chromosome 1D of bread wheat to chromosome 1R in hexaploid Triticale. Plant Breeding 1992; 109: 203–210.

    Article  Google Scholar 

  60. Zimny J, Becker D, Brettschneider R, Lörz H. Fertile, transgenic Triticale (x Triticosecale Wittmack) Plant Mol Biol 1994; submitted.

    Google Scholar 

  61. Lukaszewski AJ, Curtis Ch,. Transfer of the Glu-Dl gene from chromosome 1D to chromosome lA in hexaploid Triticale. Plant Breeding 1994; 112: 177–182.

    Article  CAS  Google Scholar 

  62. Bebeli P, Kaltsikes PJ, Karp A. Field evaluation of somaclonal variation in triticale lines differing in telomeric heterochromatin. J Genet Breed 1993; 47: 249–258.

    Google Scholar 

  63. Christou P. Genetic transformation of crop plants using microprojectile bombardment. The Plant Journal. 1992; 2 (3): 275–281.

    Article  CAS  Google Scholar 

  64. Day A, Ellis THN. Deleted forms of plastid DNA in albino plants from cereal anther culture. Current Genetics 1985; 9: 671–678.

    Article  CAS  Google Scholar 

  65. Kaltsikes PJ, Babeli PJ. The effect of rye telomeric heterochromatin on the nature and size of variance in regenerated families of hexaploid triticale. J Genet Breed 1992; 46: 359–362.

    Google Scholar 

  66. Klein T, Wolf M, Wu ED, Sanford R. High velocity microprojectiles for delivering nucleic acids into living cells. Nature 198; 327: 70–73.

    Google Scholar 

  67. Wang Y, Hu H. Gamete composition and chromosome variation in pollen-derived plants from octoploid triticale x common wheat hybrids. Theor Appl Genet 1993; 85: 681–687.

    Google Scholar 

  68. Ya-Ying W, Ching-San S, Ching-Chu W, Nan-Fen C. The induction of pollen plantlets of Triticale and Capsicum annum from anther culture. Sci Sin 1973; 16: 147–151.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Zimny, J., Lörz, H. (1996). Biotechnology for Basic Studies and Breeding of Triticale . In: Guedes-Pinto, H., Darvey, N., Carnide, V.P. (eds) Triticale: Today and Tomorrow. Developments in Plant Breeding, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0329-6_43

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0329-6_43

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6634-1

  • Online ISBN: 978-94-009-0329-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics