Keywords

1 Introduction

For a given signal \(f \in L^{r}: = L^{r} [0,2\pi ], r \ge 1,\) let

$$\begin{aligned} s_{n}(f):= s_{n}(f;x)=\frac{a_{0}}{2} +\displaystyle \sum _{k=1}^{n}(a_{k}\cos kx + b_{k}\sin kx) = \displaystyle \sum _{k=0}^{n}u_{k}(f;x), \end{aligned}$$
(1)

denote the partial sums, called trigonometric polynomial of degree (or order) n, of the first \((n+1)\) terms of the Fourier series of f. The matrix means of (1) are defined by

$$ t_{n}(f):= t_{n}(f;x)= \displaystyle \sum _{k=0}^{n}a_{n,k}s_{k} ,\,\,\,n=0,1,2,..., $$

where \(T\equiv (a_{n,k})\) is a lower triangular matrix with non-negative entries such that \(a_{n,-1}=0, A_{n,k}=\sum _{r=k}^{n}a_{n,r}\) so that \(A_{n,0}=1, \forall n\ge 0.\) The Fourier series of f is said to be T-summable to s, if \(t_{n}(f) \rightarrow s\) as \(n \rightarrow \infty .\)

By superimposing \(C^{1}\) summability upon T summability, we get the \(C^{1}\cdot T\) summability. Thus the \(C^{1}\cdot T\) means of \(\{s_{n}(f)\}\) denoted by \(t_{n}^{C^{1}\cdot T}(f)\) are given by

$$ t_{n}^{C^{1}\cdot T}(f):=(n+1)^{-1} \sum _{r=0}^{n}\bigg (\sum _{k=0}^{r}a_{r,k}s_{k}(f)\bigg ). $$

If \(t_{n}^{C^{1}\cdot T}\rightarrow s_{1}\) as \(n\rightarrow \infty \), then the Fourier series of f is said to be \({C^{1}\cdot T}\)—summable to the sum \(s_{1}.\) The regularity of methods \(C^{1}\) and T implies regularity of method \(C^{1}\cdot T.\)

A function \( f \in Lip \alpha \) if \(|f(x\,+\,t)-f(x)|=O(|t|^{\alpha }) \), for \( 0< \alpha \le 1,\) \( f \in Lip (\alpha , r)\) if \(\left( \int _{0}^{2 \pi } | f(x\,+\,t)-f(x)| ^{r} dx\right) ^{1/r}=O(|t|^{\alpha }), 0<\alpha \le 1, r\ge 1,\)

\( f \in Lip (\xi (t), r)\) if \(\left( \int _{0}^{2 \pi } | f(x\,+\,t)-f(x)| ^{r} dx\right) ^{1/r}=O(\xi (t))\) and

\( f \in W(L^{r}, \xi (t))\) if \(\left( \int _{0}^{2 \pi } | (f(x+t)-f(x))\sin ^{\beta }(x/2)|^{r} dx\right) ^{1/r}=O(\xi (t)), \,\,\)

\(\beta \ge 0, r \ge 1,\) where \(\xi (t)\) is a positive increasing function of t.

If \(\beta =0, \,W(L^{r},\xi (t),) \equiv Lip (\xi (t), r)\) and for \(\xi (t)=t^{\alpha } (\alpha >0), Lip(\xi (t),r)\equiv Lip (\alpha , r).\) \(Lip (\alpha , r)\rightarrow Lip \alpha \) as \(r\rightarrow \infty .\) Thus

$$ Lip \alpha \subseteq Lip (\alpha , r) \subseteq Lip (\xi (t), r) \subseteq W(L^{r}, \xi (t)). $$

The \(L^{r}\)-norm of \(f\in L^{r}[0,2\pi ]\) is defined by

\(\,\,\,\,\, \Vert f \Vert _{r} = \left\{ \frac{1}{2 \pi }\int _{0}^{2 \pi } |f(x)| ^{r} dx \right\} ^{1/r}\) \( (1 \le r < \infty ) \) and \(\Vert f \Vert _{\infty } = \displaystyle \sup _{x\in [0,2\pi ]} |f(x)|. \)

The degree of approximation of \(f\in L^{r}\) denoted by \(E_{n}(f)\) is given by

$$ E_{n}(f) =\displaystyle \min _{T_{n}}\parallel f(x)-T_{n}(x)\parallel _{r}, $$

in terms of n , where \(T_{n}(x)\) is a trigonometric polynomial of degree n.

This method of approximation is called trigonometric Fourier approximation.

We also write

$$\begin{aligned} \phi (t)&= f(x\,+\,t)+f(x\,-\,t)-2f(x),\\ (C^{1}\cdot T)_{n}(t)&= \frac{1}{2\pi (n\,+\,1)}\displaystyle \sum _{r=0}^{n}\sum _{k=0}^{r}a_{r,r-k}\frac{\sin (r-k+1/2)t}{\sin (t/2)}, \end{aligned}$$

and \(\tau =[1/t],\) the integral part of 1 / t.

2 Known Results

Various investigators such as Khan [3], Qureshi [810], Qureshi and Nema [11], Leindler [6] and Chandra [1] have determined the degree of approximation of functions belonging to the classes \( W(L^{r},\xi (t)), Lip (\xi (t), r), Lip (\alpha , r)\) and \(Lip \alpha \) with \(r\ge 1\) and \(0<\alpha \le 1\) using different summability methods with monotonocity conditions on the rows of summability matrices. Recently, Lal [5] has determined the degree of approximation of the functions belonging to \(Lip \alpha \) and \(W(L^{r},\xi (t))\) classes by using Cesáro-Nörlund \((C^{1}\cdot N_{p})\)—summability with non-increasing weights \(\{p_{n}\}\). He proved:

Theorem 1

Let \(N_{p}\) be a regular Nörlund method defined by a sequence \(\{p_{n}\}\) such that

$$\begin{aligned} P_{\tau }\displaystyle \sum _{v=\tau }^{n} P_v^{-1} = O (n+1). \end{aligned}$$
(2)

Let \(f \in L^{1}[0,2\pi ]\) be a \(2\pi \)-periodic function belonging to \(Lip\, \alpha \,(0 < \alpha \le 1), \) then the degree of approximation of f by \(C^{1}\cdot N_{p}\) means of its Fourier series is given by

$$\begin{aligned} \displaystyle \sup _{0 \le x \le 2\pi } | t_{n}^{CN}(x)\, -\, f(x)| =\Vert t_{n}^{CN}\,-\,f\Vert _{\infty } = \left\{ \begin{array}{ll} O((n+1)^{-\alpha }), &{} 0 < \alpha < 1 , \\ O\left( \log (n+1)\pi e/(n+1)\right) ,&{} \,\,\,\,\,\,\,\,\,\, \alpha = 1. \end{array} \right. \end{aligned}$$

Theorem 2

If f is a \(2\pi \)-periodic function and Lebesgue integrable on \([0,2\pi ]\) and is belonging to \(W(L^{r},\xi (t))\) class then its degree of approximation by \(C^{1}\cdot N_{p}\) means of its Fourier series is given by

$$\begin{aligned} \displaystyle \Vert t_{n}^{CN} -f \Vert _{r} = O\left( (n+1)^{\beta + 1/r} \xi \left( 1/(n+1)\right) \right) ,\end{aligned}$$

provided \(\xi (t)\) satisfies the following conditions:

$$\begin{aligned} \{\xi (t)/t\}\, \text{ be } \text{ a } \text{ decreasing } \text{ sequence }, \end{aligned}$$
(3)
$$\begin{aligned} \left( {\displaystyle \int _{0}^{\pi /(n+1)} \Big (t|\phi (t)| \sin ^{\beta }(t)/ \xi (t)\Big )^{r}dt}\right) ^{1/r}= O((n+1)^{-1}), \end{aligned}$$
(4)
$$\begin{aligned} \left( {\displaystyle \int _{\pi /(n+1)}^{\pi } \Big (t^{-\delta }|\phi (t)|/ \xi (t)\Big )^{r}dt} \right) ^{1/r}= O((n+1)^{\delta }), \end{aligned}$$
(5)

where \(\delta \) is an arbitrary number such that \(s(1-\delta )-1>0, r^{-1}+ s^{-1}=1, r\ge 1, \) conditions (4) and (5) hold uniformly in x.

The improved version of above theorems with their generalization to non-monotone weights \(\{p_{n}\}\) can be seen in [13].

3 Main Results

In this paper, we generalize Theorems 1 and 2 by replacing matrix \(N_{p}\) with matrix T in the light of Remarks 2.3 and 2.4 of [13, pp. 3–4]. More precisely, we prove:

Theorem 3

If \(T\equiv (a_{n,k})\) is a lower triangular regular matrix with non-negative and non-decreasing (with respect to k) entries which satisfy

$$\begin{aligned} \displaystyle \sum _{r=\tau }^{n}A_{r,r-\tau } = O(n+1), \end{aligned}$$
(6)

hold uniformly in \(\tau =[1/t],\) then the degree of approximation of a \(2\pi \)-periodic function \( f \in Lip \alpha \) \((0<\alpha \le 1)\subset L^{1}[0,2\pi ]\) by \(C^{1}\cdot T\) means of its Fourier series is given by

$$\begin{aligned} \Vert t_{n}^{C^{1}\cdot T}(f)-f (x)\Vert _{\infty } = \left\{ \begin{array}{ll} O((n+1)^{-\alpha }), &{} 0 < \alpha < 1 ,\\ O\left( (\log (n+1))/(n+1) \right) ,&{} \,\,\,\,\,\,\,\,\,\,\,\,\alpha = 1. \end{array} \right. \end{aligned}$$
(7)

Theorem 4

If \(T\equiv (a_{n,k})\) be a lower triangular regular matrix with non-negative and non-decreasing (with respect to k) entries which satisfy condition (6), then the degree of approximation of a \(2\pi \)-periodic function with \(r>1\) and \( 0<\beta \, s<1\) by \(C^{1}\cdot T\) means of its Fourier series is given by

$$\begin{aligned} \Vert t_{n}^{C^{1}\cdot T}(f) - f(x)\Vert _{r} = O\left( (n+1)^{\beta + 1/r} \xi \left( 1/(n+1)\right) \right) , \end{aligned}$$
(8)

provided positive increasing function \(\xi (t)\) satisfies the conditions:

$$\begin{aligned} \xi (t)/t \, \text{ be } \text{ a } \text{ decreasing } \text{ function }, \end{aligned}$$
(9)
$$\begin{aligned} \left( {\displaystyle \int _{0}^{\pi /(n+1)} \left( |\phi (t)| \sin ^{\beta }(t/2)/\xi (t) \right) ^{r}dt}\right) ^{1/r}= O((n+1)^{-1/r}), \end{aligned}$$
(10)
$$\begin{aligned} \left( {\int _{\pi /(n+1)}^{\pi } \left( t^{-\delta }|\phi (t)|\sin ^{\beta }(t/2)/\xi (t) \right) ^{r}dt} \right) ^{1/r}= O((n+1)^{\delta -1/r}), \end{aligned}$$
(11)

where \(\delta \) is a real number such that \(\beta +1/r>\delta >r^{-1}, r^{-1}+ s^{-1}=1,\) \(r> 1.\) Also, conditions (10) and (11) hold uniformly in x.

Remark 1

If we take \(a_{n,k}=p_{n-k}/P_{n}\) for \(k\le n\) and \(a_{n,k}=0\) for \(k > n\) such that \(P_{n}(= \sum _{k=0}^{n}p_{k}\ne 0)\rightarrow \infty \) as \(n\rightarrow \infty \) and \(P_{-1} = 0 = p_{-1}\), then \(C^{1}\cdot T\) means reduce to \(C^{1}\cdot N_{p}\) means and

$$ \sum _{r=\tau }^{n}A_{r,r-\tau } = \sum _{r=\tau }^{n} \sum _{k=r-\tau }^{r}a_{r,k} = \sum _{r=\tau }^{n} \sum _{k=r-\tau }^{r}(p_{r-k}/P_{r})= \sum _{r=\tau }^{n} ( P_{\tau }/P_{r} )=P_{\tau } \sum _{r=\tau }^{n}P_{r}^{-1}. $$

Therefore, condition (6) reduces to condition (2) and \(t_{n}^{C^{1}\cdot T}\) means reduce to \(t_{n}^{CN} means.\) Hence our Theorems 3 and 4 are generalization of Theorems 1 and 2, respectively.

4 Lemmas

We need the following lemmas for the proof of our theorems.

Lemma 1

Let \(\{a_{r,k}\}\) be a non-negative sequence of real numbers, then

$$(C^{1}\cdot T)_{n}(t)= O(n+1),\, \text{ for }\,\, 0 < t \le \pi /(n+1).$$

Proof

Using \(\sin nt \le nt \) and \(\sin (t/2) \ge t/ \pi \) for \( 0< t \le \pi /(n+1),\) we have

$$\begin{aligned} \left| (C^{1}\cdot T)_{n}(t)\right|= & {} (2\pi (n+1))^{-1}\left| \sum _{r=0}^{n}\sum _{k=0}^{r}a_{r,r-k} \, \sin ((r-k+1/2)t) / \sin (t/2) \right| \\= & {} (2\pi (n+1))^{-1}\sum _{r=0}^{n}\sum _{k=0}^{r}a_{r,r-k}\left| \sin ((r-k+1/2)t) / \sin (t/2) \right| \\\le & {} (2\pi (n+1))^{-1}\sum _{r=0}^{n}\sum _{k=0}^{r}a_{r,r-k} (r-k+1/2)t / (t/ \pi )\\\le & {} (4(n+1))^{-1}\sum _{r=0}^{n}\sum _{k=0}^{r}a_{r,r-k}(2r-2k+1)\\\le & {} (4(n+1))^{-1}\sum _{r=0}^{n}(2r+1)\sum _{k=0}^{r}a_{r,r-k}\\= & {} (4(n+1))^{-1}\sum _{r=0}^{n}(2r+1) A_{r,0}=O(n+1). \end{aligned}$$

Lemma 2

[4] If \(\{a_{r,k}\}\) is a non-negative and non-decreasing (with respect to k) sequence, then for \( 0\le a<b\le \infty ,\) \( 0 < t\le \pi \) and for every r

$$\left| \sum _{k=a}^{b}a_{r,r-k} e^{i(r-k)t}\right| = O(A_{r,r-\tau }).$$

Lemma 3

If \(\{a_{r,k}\}\) is non-negative and non-decreasing (with respect to k) sequence, then for \(0 < t \le \pi \)

$$\left| \displaystyle \sum _{r=0}^{n}\sum _{k=0}^{r}a_{r,r-k} e^{i(r-k)t}\right| = O(t^{-1})+O\left( \displaystyle \sum _{r=\tau }^{n} A_{r,r-\tau }\right) ,$$

holds uniformly in \(\tau =[1/t].\)

Proof

For \( 0 < t \le \pi ,\) we have

$$\begin{aligned} \left| \displaystyle \sum _{r=0}^{n}\sum _{k=0}^{r}a_{r,r-k} e^{i(r-k)t}\right|\le & {} \left| \sum _{r=0}^{\tau -1}\sum _{k=0}^{r}a_{r,r-k} e^{i(r-k)t}+\sum _{r=\tau }^{n}\sum _{k=0}^{r}a_{r,r-k} e^{i(r-k)t}\right| \\\le & {} \sum _{r=0}^{\tau -1}\sum _{k=0}^{r}a_{r,r-k}| e^{i(r-k)t}| +\left| \sum _{r=\tau }^{n}\sum _{k=0}^{r}a_{r,r-k} e^{i(r-k)t}\right| \\\le & {} \sum _{r=0}^{\tau -1}\sum _{k=0}^{r}a_{r,r-k}+\sum _{r=\tau }^{n} \left| \sum _{k=0}^{r}a_{r,r-k} e^{i(r-k)t}\right| \\\le & {} \sum _{r=0}^{\tau -1}1 + \sum _{r=\tau }^{n}O(A_{r,r-\tau }) = (\tau -1+1)+ O\left( \sum _{r=\tau }^{n}A_{r,r-\tau }\right) \\= & {} O(t^{-1})+O\left( \sum _{r=\tau }^{n}A_{r,r-\tau }\right) , \end{aligned}$$

in view of Lemma 2.

Lemma 4

If \(\{a_{r,k}\}\) is non-negative and non-decreasing (with respect to k) sequence and satisfies the condition (6), then

$$ |(C^{1}\cdot T)_{n}(t)| = O\left( t^{-2}/(n+1)\right) +O(t^{-1}),\, \,\text{ for }\,\, \pi /(n+1) < t \le \pi . $$

Proof

Using \(\sin (t/2) \ge t/ \pi \), for \( \pi /(n+1) < t \le \pi \) and Lemma 3, we have

$$\begin{aligned} |(C^{1}\cdot T)_{n}(t)|= & {} (2\pi (n+1))^{-1}\left| \sum _{r=0}^{n}\sum _{k=0}^{r}a_{r,r-k} \sin ((r-k+1/2)t)/ \sin (t/2)\right| \\\le & {} (2\pi (n+1))^{-1}\left| \sum _{r=0}^{n}\sum _{k=0}^{r}a_{r,r-k} \sin ((r-k+1/2)t)/ ( t/ \pi ) \right| \\= & {} (2t(n+1))^{-1}\left| \sum _{r=0}^{n}\sum _{k=0}^{r}a_{r,r-k}\sin (r-k+1/2)t\right| \\\le & {} (2t(n+1))^{-1}\left| \sum _{r=0}^{n}\sum _{k=0}^{r}a_{r,r-k} e^{i(r-k+1/2)t}\right| \\= & {} (2t(n+1))^{-1}\left| e^{it/2}\sum _{r=0}^{n}\sum _{k=0}^{r}a_{r,r-k} e^{i(r-k)t}\right| \\= & {} (2t(n+1))^{-1}\left| \sum _{r=0}^{n}\sum _{k=0}^{r}a_{r,r-k} e^{i(r-k)t}\right| \\= & {} (2t(n+1))^{-1}\left| O(t^{-1})+O\left( \sum _{r=\tau }^{n}A_{r,r-\tau }\right) \right| = O\left( t^{-2}/(n+1)\right) +O(t^{-1}), \end{aligned}$$

in view of condition (6).

5 Proof of Theorem 3

Following Titchmarsh [14], we have

$$s_{n}(f;x)-f(x) = \frac{1}{2\pi }\int _{0}^{\pi } \phi (t)(\sin (n+1/2)t / \sin (t/2)) dt$$

Denoting \(C^{1}\cdot T\) means of \(\{s_{n}(f;x)\}\) by \(t_{n}^{C^{1}\cdot T}(f),\) we write

$$\begin{aligned} t_{n}^{C^{1}\cdot T}(f)-f(x)= & {} \int _{0}^{\pi } \phi (t) (2\pi (n+1))^{-1} \sum _{r=0}^{n} \sum _{k=0}^{r}a_{r,r-k} \sin ((r-k+1/2)t)/ \sin (t/2) dt\nonumber \\= & {} \int _{0}^{\pi /(n+1)} \phi (t)(C^{1}\cdot T)_{n}(t)dt+\int _{\pi /(n+1)}^{\pi } \phi (t)(C^{1}\cdot T)_{n}(t)dt\nonumber \\ {}= & {} I_{1} + I_{2},\, \text{ say }. \end{aligned}$$
(12)

Using Lemma 1 and the fact that \(f \in Lip \,\alpha \Rightarrow \phi \in Lip\,\alpha \) {[2], Lemma 5.27}, we have

$$\begin{aligned} |I_{1}|\le & {} \int _{0}^{\pi /(n+1)} |\phi (t)| |(C^{1}\cdot T)_{n}(t)| dt = O(n+1) \int _{0}^{\pi /(n+1)} t^{\alpha } dt\nonumber \\= & {} O(n+1) ((n+1)^{-\alpha - 1}) = O((n+1)^{-\alpha }). \end{aligned}$$
(13)

Now, using Lemma 4 and the fact that \( f \in Lip \,\alpha \Rightarrow \phi \in Lip\, \alpha ,\)

$$\begin{aligned} |I_{2}|\le & {} \int _{\pi /(n+1)}^{\pi } | \phi (t)|\,\, \left| (C^{1}\cdot T)_{n}(t)\right| dt \le \int _{\pi /(n+1)}^{\pi } | \phi (t)| O\left[ (t^{-2}/(n+1))+t^{-1}\right] dt\nonumber \\= & {} O(I_{21}) + O(I_{22}),\, \text{ say, } \end{aligned}$$
(14)

where

$$\begin{aligned} I_{21}= (n+1)^{-1} \int _{\pi /(n+1)}^{\pi } t^{\alpha -2} dt = \left\{ \begin{array}{ll} O((n+1)^{-\alpha }), &{} 0 < \alpha < 1 , \\ O \left( \log (n+1) /(n+1)\right) ,&{} \,\,\,\,\,\,\,\,\,\,\,\, \alpha = 1. \end{array} \right. \end{aligned}$$
(15)

and

$$\begin{aligned} I_{22} = O\left( \int _{\pi /(n+1)}^{\pi } t^{\alpha -1} dt\right) = O((n+1)^{-\alpha }). \end{aligned}$$
(16)

Collecting (12)–(16), we get

$$ t_{n}^{C^{1}\cdot T}(f)-f(x) = \left\{ \begin{array}{ll} O((n+1)^{-\alpha }), &{} 0 < \alpha < 1,\\ O(\log (n+1) /(n+1)),&{} \,\,\,\,\,\,\,\,\,\,\,\, \alpha = 1. \end{array} \right. $$

Thus

$$ \Vert t_{n}^{C^{1}\cdot T}(f) - f \Vert _{\infty } = \displaystyle \sup _{0 \le x \le 2\pi }\{ | t_{n}^{C^{1}\cdot T}(x) - f(x)|\} = \left\{ \begin{array}{ll} O((n+1)^{-\alpha }), &{} 0 < \alpha < 1 ,\\ O((\log (n+1))/(n+1)),&{} \,\,\,\,\,\,\,\,\,\,\,\,\alpha = 1. \end{array} \right. $$

6 Proof of Theorem 4

Following the proof of Theorem 3,

$$\begin{aligned} t_{n}^{C^{1}\cdot T}(f) - f(x)= & {} \int _{0}^{\pi /(n+1)} \phi (t)(C^{1}\cdot T)_{n}(t)dt+\int _{\pi /(n+1)}^{\pi } \phi (t)(C^{1}\cdot T)_{n}(t)dt\nonumber \\= & {} I_{1}^{'} + I_{2}^{'}, \,\text{ say }. \end{aligned}$$
(17)

Using Hölder’s inequality, \(\phi (t) \in W(L^{r},\xi (t)),\) condition (10), Lemma 1 and mean value theorem for integrals, we have

$$\begin{aligned} |I_{1}^{'}|&= \left| \lim _{ \varepsilon \rightarrow 0} \int _{ \varepsilon }^{\pi /(n+1)} \left[ (\phi (t)\sin ^{\beta } (t/2) /\xi (t))\cdot (\xi (t) (C^{1}\cdot T)_{n}(t))/(\sin ^{\beta } (t/2) )\right] dt\right| \nonumber \\&\le \left[ \int _{0}^{\pi / (n+1)} \left( |\phi (t)| \sin ^{\beta } (t/2) / \xi (t)\right) ^{r}dt\right] ^{1/r}\nonumber \\&\cdot \left[ \lim _{ \varepsilon \rightarrow 0} \int _{ \varepsilon }^{\pi /(n+1)} \left( \xi (t)|(C^{1}\cdot T)_{n}(t)| / ( \sin ^{\beta } (t/2) \right) ^{s}dt\right] ^{1/s}\nonumber \\&= O((n+1)^{-1/r})\left[ \displaystyle \lim _{\varepsilon \rightarrow 0} \int _{\varepsilon }^{\pi /(n+1)} \left| \xi (t) (n+1) /(\sin ^{\beta }(t/2)) \right| ^{s}dt \right] ^{1/s}\nonumber \\&= O(n+1)^{1-1/r}(\xi (\pi /(n+1)) \left[ \lim _{ \varepsilon \rightarrow 0} \int _{\varepsilon }^{\pi /(n+1)} t^{-\beta s} dt \right] ^{1/s} \nonumber \\&= O(\xi (1/(n\,+\,1) (n\,+\,1)^{\beta +1-1/r-1/s}) =O((n+1)^{\beta } \xi (1/(n+1)), \end{aligned}$$
(18)

in view of condition (9), i.e. \((\xi (\pi /(n\,+\,1))/(\pi /(n\,+\,1))) \le (\xi ( 1/(n\,+\,1))/(1/(n\,+\,1))). \)

Using Lemma 4, we have

$$\begin{aligned} | I_{2}^{'}|= & {} \left[ \int _{\pi /(n+1)}^{\pi } |\phi (t)| \left[ O \left( t^{-2} / (n+1)\right) + O\left( t^{-1}\right) \right] dt\right] \nonumber \\= & {} O\left[ \int _{\pi /(n+1)}^{\pi }t^{-2} | \phi (t)|/ (n+1) dt\right] + O \left[ \int _{\pi /(n+1)}^{\pi }t^{-1}| \phi (t)| dt\right] \nonumber \\= & {} O(I_{21}^{'})+ O(I_{22}^{'}). \end{aligned}$$
(19)

Using Hölder’s inequality, \(| \sin t| \le 1,\, \sin (t/2) \ge (t/\pi )\) and condition (11), we have

$$\begin{aligned} |I_{21}^{'}|&= (n+1)^{-1} \left[ \int _{\pi /(n+1)}^{\pi }\left\{ (t^{-\delta }| \phi (t)| \sin ^{\beta }(t/2) / \xi (t)) \,\cdot (\xi (t) / (t^{-\delta + 2}\,\sin ^{\beta }(t/2))) \right\} dt \right] \nonumber \\&\le ((n+1)^{-1}) \left[ \int _{\pi /(n+1)}^{\pi }\left| t^{-\delta } | \phi (t)| \sin ^{\beta }(t/2) / \xi (t)\right| ^{r} dt \right] ^{1/r}\nonumber \\&\quad \quad \cdot \left[ \int _{\pi /(n+1)}^{\pi }\left| \xi (t)/\left( t^{-\delta + 2}\sin ^{\beta }(t/2)\right) \right| ^{s}dt\right] ^{1/s}\nonumber \\&= O((n+1)^{-1}) \left[ \int _{\pi /(n+1)}^{\pi }\left| t^{-\delta } | \phi (t)| \sin ^{\beta }(t/2)/ \xi (t)\right| ^{r} dt \right] ^{1/r} \nonumber \\&\cdot \left[ \int _{\pi /(n+1)}^{\pi }\left| \xi (t) /\left( t^{-\delta + 2}\sin ^{\beta }(t/2)\right) \right| ^{s}dt\right] ^{1/s}\nonumber \\&= O((n+1)^{-1}) O\left( (n+1)^{\delta -1/r}\right) \left[ \int _{\pi /(n+1)}^{\pi }\left| \xi (t)/ \left( t^{-\delta + 2} \sin ^{\beta }(t/2)\right) \right| ^{s}dt \right] ^{1/s}\nonumber \\&= O((n+1)^{\delta -1-1/r})\left[ \int _{\pi /(n+1)}^{\pi }\left( \xi (t) / t^{-\delta + 2 + \beta } \right) ^{s}dt\right] ^{1/s}\nonumber \\&= O((n+1)^{\delta -1/r})\xi (\pi /(n+1)) \left[ \int _{\pi /(n+1)}^{\pi } t^{-(-\delta + 1 + \beta )s}dt\right] ^{1/s}\nonumber \\&= O((n+1)^{\delta -1/r})\xi (\pi /(n+1)) \left[ (n+1)^{(-\delta +1 + \beta )-1/s}dt\right] \nonumber \\&= O(\xi (1/(n+1) (n+1)^{\beta }) \end{aligned}$$
(20)

in view of decreasing nature of \( \xi (t)/t\) and \(r^{-1}+s^{-1}=1.\)

Similarly, as above, we have

$$\begin{aligned} |I_{22}^{'}|= & {} \int _{\pi /(n+1)}^{\pi } t^{-1}| \phi (t)| dt = \int _{\pi /(n+1)}^{\pi }\left( t^{-\delta }|\phi (t)| \sin ^{\beta }(t/2) / \xi (t)\right) \left( \xi (t) / ( t^{1-\delta } \sin ^{\beta }(t/2) ) \right) dt\nonumber \\\le & {} \left[ \int _{\pi /(n+1)}^{\pi } \left| t^{-\delta }| \phi (t)|\sin ^{\beta }(t/2) / \xi (t) \right| ^{r}dt\right] ^{1/r}\left[ \int _{\pi /(n+1)}^{\pi } \left| \xi (t) / \left( t^{1-\delta } \sin ^{\beta }(t/2) \right) \right| ^{s} dt\right] ^{1/s}\nonumber \\= & {} O\left( (n+1)^{\delta -1/r}\right) \left[ \int _{\pi /(n+1)}^{\pi } \left( \xi (t) / t^{1-\delta + \beta } \right) ^{s} dt\right] ^{1/s}\nonumber \\= & {} O\left( (n+1)^{\delta +1-1/r}\right) \xi (1/(n+1)) \left[ \int _{\pi /(n+1)}^{\pi }t^{(\delta -\beta )s }dt\right] ^{1/s}\nonumber \\= & {} O\left( (n+1)^{\delta +1-1/r}\right) \xi (1/(n+1)) (n+1)^{(-\delta +\beta )-1/s }\nonumber \\= & {} O(\xi (1/(n+1)) (n+1)^{ \beta +1-1/r-1/s }\nonumber \\= & {} O(\xi (1/(n+1)) (n+1)^{\beta }. \end{aligned}$$
(21)

Collecting (17)–(21), we have

$$ |t_{n}^{C^{1}\cdot T}(f)-f(x)|= O\left( (n+1)^{\beta }\xi (1/(n+1))\right) . $$

Hence,

$$\begin{aligned} \Vert t_{n}^{C^{1}\cdot T}(f) - f(x)\Vert _{r}= & {} \left( 1/2\pi \int _{0}^{2\pi }| t_{n}^{C^{1}\cdot T}(f) - f(x)|^{r}dx\right) ^{1/r} = O\left( (n+1)^{\beta }\xi \left( 1/(n+1 \right) \right) . \end{aligned}$$

Remark 2

The proof of Theorem 3, for \(r=1,\) i.e. \(s=\infty \) can be written by using sup norm while using Hölder’s inequality.

7 Corollaries

The following corollaries can be derived from Theorem 4

1. If \(\beta =0\) , then for \(f\in Lip (\xi (t),r), \Vert t_{n}^{C^{1}\cdot T}(f) - f(x)\Vert _{r} = O \left( \xi (1/n)\right) .\)

2. If \(\beta =0, \xi (t)=t^{\alpha }(0 < \alpha \le 1),\) then for \(f \in Lip(\alpha ,r)(\alpha > 1/r),\)

$$\begin{aligned} \Vert t_{n}^{C^{1}\cdot T}(f) - f(x)\Vert _{r} = O\left( n^{-\alpha }\right) . \end{aligned}$$
(22)

3. If \( r\rightarrow \infty \) in Corollary 2, then for \(f\in Lip \alpha (0 < \alpha < 1),\) (22) gives

$$\Vert t_{n}^{C^{1}\cdot T}(f) - f(x)\Vert _{\infty } = O(n^{-\alpha }).$$

Remark 3

In view of Remark 2, corollaries of Lal [5, p. 350] are particular cases of our Corollaries 2 and 3, respectively.