Skip to main content

Principal Values of Cauchy Integrals, Rectifiable Measures and Sets

  • Conference paper
ICM-90 Satellite Conference Proceedings
  • 229 Accesses

Abstract

The extensive studies started by A. P. Calderon in the sixties and continued by many authors up today have revealed that the Cauchy integrals

$$ {C_{\Gamma }}f(z) = \int_{\Gamma } {\frac{{f\left( \zeta \right)d\zeta }}{{\zeta - z}}} $$

behave very well on sufficiently regular, not necessarily smooth, curves F, see [CCFJR], [D] and [MT].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. P. Calderon, C. P. Calderon, E. B. Fabes, M. Jodeit Jr. and N. M. Riviere, Applications of the Cauchy integrals along Lipschitz curves, Bull. Amer. Math. Soc. 84 (1978), 287–290.

    Article  MathSciNet  MATH  Google Scholar 

  2. G. David, Operateurs integraux singuliers sur certaines courbes du plan, Ann. Sci. Ecole Norm. Sup. (4) 17 (1984), 157–189.

    MathSciNet  MATH  Google Scholar 

  3. K. J. Falconer, Geometry of Fractal Sets, Cambridge University Press, 1985.

    Google Scholar 

  4. X. Fang, The Cauchy integral of Calderon and analytic capacity, Ph. D. Thesis, Yale University, 1990.

    Google Scholar 

  5. J. Garnett, Analytic Capacity and Measure, Lecture Notes in Math. 297, Springer-Verlag, 1972.

    Google Scholar 

  6. P. W. Jones, Square functions, Cauchy integrals, analytic capacity, and harmonic measure, (Harmonic Analysis and Partial Differential Equations (ed. J. Garcia-Cuerva), Lecture Notes in Math. 1384, Springer-Verlag, 1989, pp. 24–68.

    Google Scholar 

  7. D. Khavinson, On a geometric localization of the Cauchy potentials, Michigan Math. J. 33 (1986), 377–385.

    MathSciNet  MATH  Google Scholar 

  8. P. Mattila, A class of sets with zero length and positive analytic capacity, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 387–395.

    MathSciNet  MATH  Google Scholar 

  9. MP2] P. Mattila, Cauchy singular integrals and rectifiability of measures in the plane, to appear in Adv. in Math.

    Google Scholar 

  10. T. Murai, A Real Variable Method for the Cauchy Transform, and Analytic Capacity, Lecture Notes in Math. 1307, Springer-Verlag, 1988.

    Google Scholar 

  11. D. Preiss, Geometry of measures in Rn. Distribution, rectifiability, and densities, Ann. of Math. 125 (1987), 537–643.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Tokyo

About this paper

Cite this paper

Mattila, P. (1991). Principal Values of Cauchy Integrals, Rectifiable Measures and Sets. In: Igari, S. (eds) ICM-90 Satellite Conference Proceedings. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68168-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68168-7_14

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-70084-5

  • Online ISBN: 978-4-431-68168-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics