Skip to main content

Abstract

Acetylcholine (ACh) is one of the predominant neurotransmitters in the brain. The majority of cholinergic cells are found in the medial septal nucleus, the basal forebrain, the striatum, and the brainstem (Struble et al. 1986). The major projection areas include cortex, hippocampus, striatum, substantia nigra, and medial habenula (Butcher 1995; Woolf et al. 1984). ACh is involved in the regulation of cortical arousal (Semba 1991), attention (Murphy and Sillito 1991), and sleep-wake cycles (Hobson 1990). Thus, the actions of ACh are manifold. The actions of ACh are mediated by two different types of receptors: the ionotropic nicotinic type and the metabotropic muscarinic type. Each of these classes of ACh receptor (AChR) has multiple subtypes with unique structural and functional characteristics, and thus ACh released from a nerve terminal may contribute to a wide variety of brain functions by activating different intracellular pathways depending on the distribution of the receptor types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abdulla FA, Calaminici M-R, Stephenson JD, et al (1993) Chronic treatment with cholinoceptor drugs influences spatial learning in rats. Psychopharmacology 111:508–511

    Article  PubMed  CAS  Google Scholar 

  • Albuquerque EX, Pereira EFR, Castro NG, et al (1995) Neuronal nicotinic receptors: function, modulation and structure. Sem Neurosci 7:91–101

    Article  CAS  Google Scholar 

  • Alkondon M, Pereira EFR, Albuquerque EX (1996a) Mapping the location of functional nicotinic and γ-aminobutyric acid A receptors on hippocampal neurons. J Pharmacol Exp Ther 279:1491–1506

    PubMed  CAS  Google Scholar 

  • Alkondon M, Pereira EFR, Albuquerque EX (1996b) Characterization of nicotinic acetylcholine receptors in CA1 neurons of rat hippocampal slices. Soc Neurosci Abstr 22:1267

    Google Scholar 

  • Amarai DG, Kurz J (1985) An analysis of the origins of the cholinergic and noncholinergic septal projections to the hippocampal formation of the rat. J Comp Neurol 240:37–59

    Article  Google Scholar 

  • Arai A, Guidotti A, Costa E, et al (1996) Effect of the AMPA receptor modulator IDRA 21 on LTP in hippocampal slices. Neuroreport 7:2211–2215

    Article  PubMed  CAS  Google Scholar 

  • Bartus RT, Dean RD, Beer B, et al (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–414

    Article  PubMed  CAS  Google Scholar 

  • Beatty WW, Carbone CP (1980) Septal lesions, intramaze cues and spatial behavior in rats. Physiol Behav 24:675–678

    Article  PubMed  CAS  Google Scholar 

  • Benardo LS, Prince DA (1982) Cholinergic excitation of mammalian hippocampal pyramidal cells. Brain Res 249:315–331

    Article  PubMed  CAS  Google Scholar 

  • Benowitz NL, Porchet H, Jacob P (1989) Nicotine dependence and tolerance in man: pharmacokinetic and pharmacodynamic investigations. Prog Brain Res 79:279–287

    Article  PubMed  CAS  Google Scholar 

  • Bliss TVP, Lomo T (1973) Long-lasting potentiation of synaptic transmission in dentate area of the anesthetized rabbit following stimulation of perforant path. J Physiol 232:331–356

    PubMed  CAS  Google Scholar 

  • Bliss TVP, Gardner-Medwin AR (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the unanesthetized rabbit following stimulation of perforant path. J Physiol 232:357–374

    PubMed  CAS  Google Scholar 

  • Brenner DE, Kuku UWA, Vanbelle G, et al (1993) Relationship between cigarette smoking and Alzheimer’s disease in a population-based case-control study. Neurology 43:293–300

    Article  PubMed  CAS  Google Scholar 

  • Butcher LL (1995) Cholinergic neurons and networks. The rat nervous system. Academic Press, New York, pp 1003–1015

    Google Scholar 

  • Chavez NL, Crona JH, Washburn MS, et al (1997) Pharmacological characterization of recombinant human neuronal nicotinic acetylcholine receptors (α2β2, α2β4, α3β2, α3β4, α4β2, α4β4 and α7 expressed in Xenopus oocytes. J Pharmacol Exp Ther 280:346–356

    Google Scholar 

  • Clarke PB (1993) Nicotinic receptors in mammalian brain: localization and relation to cholinergic innervation. Prog Brain Res 98:77–83

    Article  PubMed  CAS  Google Scholar 

  • Clarke PB, Reuben M (1996) Release of [3H]-noradrenaline from rat hippocampal synaptosomes by nicotine: mediation by different nicotinic receptor subtypes from striatal [3H]-dopamine release. Br J Pharmacol 117:595–606

    Article  PubMed  CAS  Google Scholar 

  • Clarke PB, Schwartz RD, Paul SM, et al (1985) Nicotinic binding in rat brain: autoradiographic comparison of [3H] acetylcholine, [3H]nicotine, and [125I]-α-bungarotoxin. J Neurosci 5:1307–1315

    PubMed  CAS  Google Scholar 

  • Cole AE, Nicoli RA (1984) The pharmacology of cholinergic excitatory responses in hippocampal pyramidal cells. Brain Res 305:283–290

    Article  PubMed  CAS  Google Scholar 

  • Court JA, Perry EK (1994) CNS nicotinic receptors. Possible therapeutic targets in neurodegenerative disorders. CNS Drugs 2:216–233

    Article  CAS  Google Scholar 

  • Couturier S, Bertrand D, Matter J-M, et al (1990) A neuronal nicotinic acetylcholine receptor subunit (α7) is developmentally regulated and forms a homooligomeric channel blocked by α-BTX. Neuron 5:847–856

    Article  PubMed  CAS  Google Scholar 

  • Dani JA, Heinemann S (1996) Molecular and cellular aspects of nicotine abuse. Neuron 16:905–908

    Article  PubMed  CAS  Google Scholar 

  • Decker MW, Curzon P, Brioni JD (1995) Influence of separate and combined septal and amygdala lesions on memory, acoustic startle, anxiety, and locomotor activity in rats. Neurobiol Learn Mem 64:156–168

    Article  PubMed  CAS  Google Scholar 

  • Delbono O, Gopalakrishnan M, Renganathan M, et al (1997) Activation of the recombinant humanα7 nicotinic acetylcholine receptor significantly raises intracellular free calcium. J Pharmacol Exp Ther 280:428–438

    PubMed  CAS  Google Scholar 

  • Donnelly RD, Xue IC, Americ SP, et al (1996) In vitro neuroprotective properties of the novel cholinergic channel activator (ChCA), ABT-418. Brain Res 719:36–44

    Article  Google Scholar 

  • Dunnett SB, Low WC, Iverson SD, et al (1982) Septal transplants restore maze learning in rats with fornix-fimbria lesions. Brain Res 251:348–355

    Article  Google Scholar 

  • Freedman R, Wetmore C, Stromberg I, et al (1993) a-Bungaro toxin binding to hippocampal interneurons: immunocytochemical characterization and effects on growth factor expression. J Neurosci 13:1965–1975

    PubMed  CAS  Google Scholar 

  • Freund TF, Antal M (1988) GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature (Lond) 336:170–173

    Article  PubMed  CAS  Google Scholar 

  • Freund RK, Jungschaffer DA, Collins AC, et al (1988) Evidence for modulation of GABAergic neurotransmission by nicotine. Brain Res 453:215–220

    Article  PubMed  CAS  Google Scholar 

  • Fu WM, Liu JJ (1997) Regulation of acetylcholine release by presynaptic nicotinic receptors at developing neuromuscular synapses. Mol Pharmacol 51:390–398

    PubMed  CAS  Google Scholar 

  • Gähwiler BH (1988) Organotypic cultures of neural tissue. Trends Neurosci 11:484–489

    Article  PubMed  Google Scholar 

  • Gähwiler BH, Brown DA (1985) Functional innervation of cultured hippocampal neurons by cholinergic afferents from co-cultured septal explants. Nature (Lond) 313:577–579

    Article  Google Scholar 

  • Gray R, Rajan AS, Radcliffe KA, et al (1996) Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature (Lond) 383:713–716

    Article  CAS  Google Scholar 

  • Heinemann S, Boulter J, Connolly J, et al (1991) The nicotinic receptor genes. Clin Neuropharmacol 14:S45-S61

    Google Scholar 

  • Hepler DJ, Wenk GL, Cribbs BL, et al (1985) Memory impairments following basal forebrain lesions. Brain Res 346:8–14

    Article  PubMed  CAS  Google Scholar 

  • Hobson JA (1990) Sleeping and dreaming. J Neurosci 10:371–382

    PubMed  CAS  Google Scholar 

  • Jones GMM, Sahakian BJ, Levy R, et al (1992) Effects of acute subcutaneous nicotine on attention, information processing and short-term memory in Alzheimer’s disease. Psychopharmacology 108:485–494

    Article  PubMed  CAS  Google Scholar 

  • Leanza G, Muir J, Nilsson OG, et al (1996) Selective immunolesioning of the basal forebrain cholinergic system disrupts short-term memory in rats. Eur J Neurosci 8:1535–1544

    Article  PubMed  CAS  Google Scholar 

  • Lee PN (1994) Smoking and Alzheimer’s disease: a review of the epidemiological evidence. Neuroepidemiology 13:131–144

    Article  PubMed  Google Scholar 

  • Leranth C, Frotscher M (1989) Organization of the septal region in the rat brain: cholinergic-GAB Aergic interconnections and the termination of hippocamposeptal fibers. J Comp Neurol 289:304–314

    Article  PubMed  CAS  Google Scholar 

  • Levin ED (1992) Nicotine systems and cognitive function. Psychopharmacology 108:417–431

    Article  PubMed  CAS  Google Scholar 

  • Levin ED (1993) Nicotinic involvement in cognitive function: possible therapeutic applications. Med Chem Res 2:612–627

    CAS  Google Scholar 

  • Lewis PR, Shute CCD (1967) The cholinergic limbic system: projections to hippocampal formation, medial cortex, nuclei of the ascending cholinergic reticular system and subfornical organ and supraoptic crest. Brain 90:521–540

    Article  PubMed  CAS  Google Scholar 

  • Lindstrom J, Schoepfer R, Conroy W, et al (1991) The nicotinic acetylcholine receptor gene family. Adv Exp Med Biol 287:255–278

    Article  PubMed  CAS  Google Scholar 

  • Madison DV, Lancaster B, Nicoli RA (1987) Voltage clamp analysis of cholinergic action in the hippocampus. J Neurosci 7:733–741

    PubMed  CAS  Google Scholar 

  • McGehee DS, Heath MJ, Gelber S, et al (1995) Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 269:1692–1696

    Article  PubMed  CAS  Google Scholar 

  • McGehee DS, Role LW (1995) Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Annu Rev Physiol 57:521–546

    Article  PubMed  CAS  Google Scholar 

  • McGehee DS, Role LW (1996) Presynaptic ionotropic receptors. Curr Opin Neurobiol 6:342–349

    Article  PubMed  CAS  Google Scholar 

  • Morris RGM, Anderson E, Lynch GS, et al (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature (Lond) 319:774–776

    Article  CAS  Google Scholar 

  • Muller D, Buchs PA, Stoppini L (1993) Time course of synaptic development in hippocampal organotypic cultures. Dev Brain Res 71:93–100

    Article  CAS  Google Scholar 

  • Murphy PC, Sillito AM (1991) Cholinergic enhancement of direction selectivity in the visual cortex of the cat. Neuroscience 40:13–20

    Article  PubMed  CAS  Google Scholar 

  • Newhouse PA, Potter A, Lenox RH (1993) The effects of nicotinic agents on human cognition: possible therapeutic applications in Alzheimer’s and Parkinson’s diseases. Med Chem Res 2:628–642

    CAS  Google Scholar 

  • Nordberg A, Romanelli L, Sundwall A, et al (1989) Effect of acute and subchronic nicotine treatment on cortical acetylcholine release and on nicotinic receptors in rats and guinea-pigs. Br J Pharmacol 98:71–78

    Article  PubMed  CAS  Google Scholar 

  • Picciotto MR, Zoli M, Rimondini R, et al (1998) Acetylcholine receptors containing the beta 2 subunit are involved in the reinforcing properties of nicotine. Nature (Lond) 391:173–177

    Article  CAS  Google Scholar 

  • Poincheval-Fuhrman S, Sara SJ (1993) Chronic nicotine ingestion improves radial arm mazeperformance in rats. Behav Pharmacol 4:535–539

    Article  PubMed  CAS  Google Scholar 

  • Price DL, Koliatsos VE, Clatterbuck RC (1993) Cholinergic systems: human diseases, animal models, and prospects for therapy. Prog Brain Res 98:51–60

    Article  PubMed  CAS  Google Scholar 

  • Reece LJ, Schwartzkroin PA (1991) Nicotine exerts the differential effects on different CAl hippocampal cell types. Brain Res 540:287–290

    Article  PubMed  CAS  Google Scholar 

  • Ridley RM, Thomley HD, Baker HF, et al (1991) Cholinergic neural transplants into hippocampus restore learning ability in monkeys with fornix lesions. Exp Brain Res 83:533–538

    Article  PubMed  CAS  Google Scholar 

  • Role LW, Berg DK (1996) Nicotinic receptors in the development and modulation of CNS synapses. Neuron 16:1077–1085

    Article  PubMed  CAS  Google Scholar 

  • Rosecrans JA, Karan LD (1993) Neurobehavioral mechanisms of nicotine action: role in the initiation and maintenance of tobacco dependence. J Subst Abuse Treat 10:161–170

    Article  PubMed  CAS  Google Scholar 

  • Sahakian B J, Coull JT (1994) Nicotine and tetrahydroaminoacridine: evidence for improved attention in patients with dementia of the Alzheimer type. Drug Dev Res 31:80–88

    Article  Google Scholar 

  • Sargent PB (1993) The diversity of neuronal nicotinic acetylcholine receptors. Annu Rev Neurosci 16:403–443

    Article  PubMed  CAS  Google Scholar 

  • Seguela P, Wadiche J, Dineley MK, et al (1993) Molecular cloning, functional properties, and distribution of rat brain α7: a nicotinic cation channel highly permeable to calcium. J. Neurosci 13:596–604

    PubMed  CAS  Google Scholar 

  • Semba K (1991) The cholinergic basal forebrain: a critical role in cortical arousal. In: Napier TC (ed) The basal forebrain. Plenum Press, New York, pp 197–218

    Chapter  Google Scholar 

  • Sparks DL, Hunsaker JD, Slevin JT, et al (1992) Monoaminergic and cholinergic synaptic markers in the nucleus basalis of Meynert (nbM): normal age-related changes and the effect of heart disease and Alzheimer’s disease. Ann Neurol 31:611–620

    Article  PubMed  CAS  Google Scholar 

  • Struble RG, Lehmann J, Mitchell SJ, et al (1986) Basal forebrain neurons provide major cholinergic innervation of primate neocortex. Neurosci Lett 66:215–220

    Article  PubMed  CAS  Google Scholar 

  • Summers KL, Giacobini E (1995) Effects of local and repeated systemic administration of (-)-nicotine on extracellular levels of acetylcholine, norepinephrine, dopamine, and serotonin in rat cortex. Neurochem Res 20:753–759

    Article  PubMed  CAS  Google Scholar 

  • Whiting PJ, Schoepfer R, Conroy, WG, et al (1991) Expression of nicotinic acetylcholine receptor subtypes in brain and retina. Mol Brain Res 10:61–70

    Article  PubMed  CAS  Google Scholar 

  • Wilkie GI, Hutson P, Sullivan JP, et al (1996) Pharmacological characterization of a nicotinic autoreceptor in rat hippocampal synaptosomes. Neurochem Res 21:1141–1148

    Article  PubMed  CAS  Google Scholar 

  • Woolf NJ, Eckenstein F, Butcher LL (1984) Cholinergic systems in the rat brain. I. Projections to the limbic telencephalon. Brain Res Bull 13:751–784

    Article  PubMed  CAS  Google Scholar 

  • Zamani MR, Allen YS, Owen GP, et al (1997) Nicotine modulates the neurotoxic effect of β-amyloid protein (25-35) in hippocampal cultures. Neuroreport 8:513–517

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Japan

About this chapter

Cite this chapter

Fujii, S., Walcott, E.C., Sumikawa, K. (1999). The Action of Nicotine in the Mammalian Brain. In: Yamamoto, I., Casida, J.E. (eds) Nicotinoid Insecticides and the Nicotinic Acetylcholine Receptor. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67933-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67933-2_10

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68011-6

  • Online ISBN: 978-4-431-67933-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics