Skip to main content

Imprecision and Uncertainty in Database Systems

  • Conference paper
Fuzziness in Database Management Systems

Part of the book series: Studies in Fuzziness ((STUDFUZZ,volume 5))

Abstract

Databases are models of the real world. Yet, our knowledge of the real world is often imperfect, thus challenging our ability to create databases of integrity. To uphold the integrity of a database in situations where knowledge of the real world is imperfect, one may either (1) restrict the model to that portion of the real world about which perfect information is available, or (2) develop formalisms that allow the representation of imperfect information. This paper surveys some of the better-known database formalisms for capturing imperfect information. Imperfections in the specification and processing of transactions also have important impact on the quality of the information delivered to users, and this survey discusses them as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. Abiteboul and G. Grahne. Update semantics for incomplete databases. In Proceedings of the Eleventh International Conference on Very Large Data Bases, pages 1–12, 1985.

    Google Scholar 

  2. R. Agrawal, N. H. Gehani, and J. Srinivasan. OdeView: The graphical interface to Ode. In Proceedings of ACM-SIGMOD International Conference on Management of Data, pages 34–43, 1990.

    Google Scholar 

  3. D. Barbara, H. Garcia-Molina, and D. Porter. The management of probabilistic data. IEEE Transactions on Knowledge and Data Engineering, 4 (5): 487–502, October 1992.

    Article  Google Scholar 

  4. Lea Sombe (P.Besnard, M.-0. Cordier, D. Dubois, L. Farinas del Cerro, C. Froidevaux, Y. Moinard, H. Prade, C. Schwind, and P. Siegel). Special issue on reasoning under incomplete information in artificial intelligence. International Journal of Intelligent Systems,5(4), September 1991.

    Google Scholar 

  5. P. Bosc and H. Prade. An introduction to fuzzy set and possibility theory-based approaches to the treatment of uncertainty and imprecision in database management systems. In A. Motro and P. Smets, editors, Proceedings of the Workshop on Uncertainty Management in Information Systems: From Needs to Solutions, pages 44–70, 1993.

    Google Scholar 

  6. B. P. Buckles and F. E. Petry. A fuzzy representation of data for relational databases. Fuzzy Sets and Systems, 7 (3): 213–226, May 1982.

    Article  Google Scholar 

  7. R. Cavallo and M. Pittrelli. The theory of probabilistic databases. In Proceedings of the Thirteenth International Conference on Very Large Data Bases, pages 71–81, 1987.

    Google Scholar 

  8. E. F. Codd. Extending the database relational model to capture more meaning. ACM Transactions on Database Systems,4(4):397434, December 1979.

    Google Scholar 

  9. C. J. Date. Relational Database: Selected Writings. Addison Wesley, Reading, Massachusetts, 1986.

    Google Scholar 

  10. C. J. Date. NOT is not “not”! In Relational Database Writings 1985–1989. Addison Wesley, Reading, Massachusetts, 1990.

    Google Scholar 

  11. A. D’Atri, A. Motro, and L. Tarantino. ViewFinder: an object browser. Technical report, Department of Information and Software Systems Engineering, George Mason University, June 1992.

    Google Scholar 

  12. R. Demolombe and L. Farinas del Cerro. An algebraic evaluation method for deduction in incomplete data bases. Journal of Logic Programming, 5: 183–205, 1988.

    Article  Google Scholar 

  13. C. Faloutsos, W. Equitz, M. Flickner, W. Niblack, D. Petkovic, and R. Barber. Efficient and effective querying by image content. Journal of Intelligent Information Systems,forthcoming.

    Google Scholar 

  14. G. Gottlob and R. Zicari. Closed world assumption opened through null values. In Proceedings of the Fourteenth International Conference on Very Large Data Bases, pages 50–61, 1988.

    Google Scholar 

  15. P. Harmon and D. King. Expert Systems — Artificial Intelligence in Business. John Wiley & Sons, New York, New York, 1985.

    Google Scholar 

  16. A. R. Hurson, M. W. Bright, and S. H. Pakzad, editors. Multi-database Systems: An Advanced Solution for Global Information Sharing. IEEE Computer Society Press, Los Alamitos, California, 1994.

    Google Scholar 

  17. T. Ichikawa and M. Hirakawa. ARES: A relational database with the capability of performing flexible interpretation of queries. IEEE Transactions on Software Engineering, SE-12(5): 624–634, May 1986.

    Google Scholar 

  18. T. Imielinski. Intelligent query answering in rule based systems. Journal of Logic Programming, 4 (3): 229–257, September 1987.

    Article  Google Scholar 

  19. T. Imielinski. Incomplete information in logical databases. Data Engineering, 12 (2): 29–40, June 1989.

    Google Scholar 

  20. T. Imielinski and K. Vadaparty. Complexity of querying databases with or-objects. In Proceedings of PODS-89, the 8th Symposium on Principles of Database Systems, 1989.

    Google Scholar 

  21. S. Kwan, F. Olken, and D. Rotem. Uncertain, incomplete, and inconsistent data in scientific and statistical databases. In A. Motro and P. Smets, editors, Proceedings of the Workshop on Uncertainty Management in Information Systems: From Needs to Solutions, pages 64–91, 1992.

    Google Scholar 

  22. D. Maier. The Theory of Relational Databases. Computer Science Press, Rockville, Maryland, 1983.

    Google Scholar 

  23. A. Motro. BAROQUE: A browser for relational databases. ACM Transactions on O f fice Information Systems, 4 (2): 164–181, April 1986.

    Article  Google Scholar 

  24. A. Motro. VAGUE: A user interface to relational databases that permits vague queries. ACM Transactions on Office Information Systems, 6 (3): 187–214, July 1988.

    Article  Google Scholar 

  25. A. Motro. Integrity = validity -I- completeness. ACM Transactions on Database Systems, 14 (4): 480–502, December 1989.

    Article  Google Scholar 

  26. A. Motro. FLEX: A tolerant and cooperative user interface to databases. IEEE Transactions on Knowledge and Data Engineering, 2 (2): 231–246, June 1990.

    Article  Google Scholar 

  27. A. Motro. A formal framework for integrating inconsistent answers from multiple information sources. Technical Report ISSE-TR-93106, Department of Information and Software Systems Engineering, George Mason University, October 1993.

    Google Scholar 

  28. A. Motro. Intensional answers to database queries. IEEE Transactions on Knowledge and Data Engineering, 6 (3): 444–454, June 1994.

    Article  Google Scholar 

  29. A. Motro and P. Smets, editors. Proceedings of Workshop on Uncertainty Management in Information Systems: From Needs to Solutions, 1992.

    Google Scholar 

  30. A. Ola and G. Ozsoyoglu. Incomplete relational database models based on intervals. IEEE Transactions on Knowledge and Data Engineering, 5 (2): 293–308, April 1993.

    Article  Google Scholar 

  31. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo, California, 1988.

    Google Scholar 

  32. G. Piatetsky-Shapiro. Discovery, analysis and presentation of strong rules. In G. Piatetsky-Shapiro and W. Frawley, editors, Knowledge Discovery in Databases, pages 227–248. AAAI Press/MIT Press, Menlo Park, California, 1991.

    Google Scholar 

  33. H. Prade and C. Testemale. Generalizing database relational algebra for the treatment of incomplete or uncertain information and vague queries. Information Sciences, 34 (2): 115–143, November 1984.

    Article  Google Scholar 

  34. K. V. S. V. N. Raju and A. Majumdar. Fuzzy functional dependencies and lossless join decomposition of fuzzy relational databasesystems. ACM Transactions on Database Systems, 13 (2): 129–166, June 1988.

    Article  Google Scholar 

  35. R. Reiter. On closed world data bases. In Logic and Databases, pages 55–76. Plenum Press, New York, New York, 1978.

    Google Scholar 

  36. T. R. Rogers and R. G. G. Cattell. Object-oriented database user interfaces. Technical report, Information Management Group, Sun Microsystems, 1987.

    Google Scholar 

  37. G. Salton and M. J. McGill. Introduction to Modern Information Retrieval. McGraw-Hill, New York, New York, 1983.

    Google Scholar 

  38. P. Smets. Imperfect information: Imprecision–uncertainty. In A. Motro and P. Smets, editors, Proceedings of the Workshop on Uncertainty Management in Information Systems: From Needs to Solutions, pages 1–28, 1993.

    Google Scholar 

  39. P. Smets and A. Motro, editors Proceedings of Workshop on Uncertainty Management in Information Systems: From Needs to Solutions 1993.

    Google Scholar 

  40. H. R. Turtle and W. B. Croft. Uncertainty in information retrieval systems. In A. Motro and P. Smets, editors, Proceedings of the Workshop on Uncertainty Management in Information Systems: From Needs to Solutions, pages 111–137, 1992.

    Google Scholar 

  41. C. J. van Rijsbergen. Information Retrieval (Second Edition). Butterworths, London, 1979.

    Google Scholar 

  42. S. V. Vrbsky and J. W. S. Liu. APPROXIMATE: A query processor that produces monotonically improving approximate answers. IEEE Transactions on Knowledge and Data Engineering, 5 (6): 1056–1068, December 1993.

    Article  Google Scholar 

  43. M. D. Williams. What makes RABBIT run? International Journal of Man-Machine Studies, 21 (4): 333–352, October 1984.

    Article  Google Scholar 

  44. M. Zemankova and A. Kandel. Implementing imprecision in information systems. Information Sciences, 37 (1,2,3): 107–141, December 1985.

    Article  Google Scholar 

  45. R. Zicari. Databases and incomplete information. In A. Motro and P. Smets, editors, Proceedings of the Workshop on Uncertainty Management in Information Systems: From Needs to Solutions, pages 52–63, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Motro, A. (1995). Imprecision and Uncertainty in Database Systems. In: Bosc, P., Kacprzyk, J. (eds) Fuzziness in Database Management Systems. Studies in Fuzziness, vol 5. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1897-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1897-0_1

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-662-11805-4

  • Online ISBN: 978-3-7908-1897-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics