Skip to main content

Spherical Waves, Sources, and Multipoles

  • Chapter
The Foundations of Acoustics

Abstract

Sound rays, sound beams, plane waves, and cylindrical waves are possible only near a sound source. According to Huygen’s principle, every point in a wave front acts as a secondary source and propagates energy in all directions. This spreading out of the sound energy leads to a divergence of the sound waves so that, eventually, at great distances from the source, all sound waves become spherical waves. From a great distance, every sound source appears as the center of outgoing spherical waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bies, D. A.: Effect of a reflecting plane on an arbitrarily oriented multipole. J.A.S.A. 33 (1961) 286.

    MathSciNet  Google Scholar 

  • Brekhovskikh, L.: Reflection of spherical waves on the plane separation of two media. J. Tech. Phys. (U.S.S.R.) 18 (1948) 455–482 (in Russian).

    Google Scholar 

  • Horton, C. W., Sobey, A. E., Jr.: Studies on the near fields of monopole and dipole acoustic sources. J.A.S.A. 30 (1958) 1088.

    Google Scholar 

  • Ingard, U.: On the theory and design of acoustic resonators. J.A.S.A. 25 (1953) 1037.

    Google Scholar 

  • Ingard, U., Lamb, G. L., JR.: Effect of a reflecting plane on the power output of sound sources. J.A.S.A. 29 (1957) 743.

    Google Scholar 

  • Ingard, U., Lyon, R. H.: Impedance of a resistance loaded Helmholtz resonator. J.A.S.A. 25 (1953) 854.

    Google Scholar 

  • Karnovskh, M. I.: Interaction acoustical impedances of spherical radiators and resonators. Comptes Rendus (Doklady) de l’Académie des Sciences de l’URSS 32 (1941) 40–43.

    Google Scholar 

  • Mclachlan, N. W.: Loudspeakers. Oxford: Clarendon Press. 1934.

    Google Scholar 

  • Mcleroy, E. G.: Complex image theory of low-frequency sound propagation in shallow water. J.A.S.A. 33 (1961) 1120.

    Google Scholar 

  • Morse, P. M., Ingard, U.: Theoretical acoustics. New York, N. Y.: McGraw-Hill. 1968;

    Google Scholar 

  • Morse, P. M., Ingard, U.: Linear acoustic theory, p. 1–127 (in Handbuch der Physik, Vol. XI ). Berlin Göttingen—Heidelberg: Springer. 1962.

    Google Scholar 

  • Paul, D. I.: Acoustical radiation from a point source in the presence of two media. J.A.S.A. 29 (1957) 1102.

    Google Scholar 

  • Rayleigh, Lord: The theory of sound, Vol. I. London: Macmillan. 1894.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer-Verlag/Wien

About this chapter

Cite this chapter

Skudrzyk, E. (1971). Spherical Waves, Sources, and Multipoles. In: The Foundations of Acoustics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8255-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8255-0_19

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-8257-4

  • Online ISBN: 978-3-7091-8255-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics