Skip to main content

Assessment of the Inelastic Scattering Model in Monte-Carlo Simulations

  • Conference paper
Modern Developments and Applications in Microbeam Analysis

Part of the book series: Mikrochimica Acta Supplement ((MIKROCHIMICA,volume 15))

  • 507 Accesses

Abstract

Electron backscattering and transmission through thin films have been simulated by the Monte-Carlo method. Instead of the backscattering coefficient we calculated Niedrig’s coefficient C N = η/(N 1 Z 2 d 1/2), where rj is the backscattering coefficient, N 1 is the number of atoms in a volume unit, Z is atomic number, and d1/2 is the film thickness giving a value for the backscattering coefficient of half that for a bulk specimen. In the case of electron transmission, the most probable energy loss, W p , was found. The calculations were carried out for Al, Cu, and Au, the former for 10–100 keV primary energy and in the 50–2000 µg/ cm2 film thickness range, the latter for a primary energy of 20keV and in the 150–650 µg/cm2 film thickness range. Tables calculated by means of the Hartree-Fock atom function were used for simulating elastic scattering, and several models of inelastic scattering were employed — the modified Bethe model and models with exponential and hyperbolic shapes of energy losses (with or without electron deflection at scattering). Our findings were compared with published experimental results. In the case of Niedrig’s coefficient, an exact comparison was impossible. Nevertheless, for the systems studied best agreement between calculated and experimental values of W p was reached when using the model containing the hyperbolic shape of energy loss, (usually without deflection during scattering). This result provided an opportunity, when combined with previous assessments of elastic models, to improve the accuracy of calculation for future employment of the Monte-Carlo method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. L. Reichelt, A. Engel, Ultramicroscopy 1994, 13, 279.

    Article  Google Scholar 

  2. D. C. Joy, J. Microscopy 1987, 147, 51.

    Article  CAS  Google Scholar 

  3. D. F. Kyser, in: Introduction to Analytical Electron Microscopy ( J. J. Hren, J. I. Goldstein, D. C. Joy, eds.), Plenum, New York 1987, p. 199.

    Google Scholar 

  4. R Karduck, N. Ammann, W. R Rehback, Microbeam Analysis 1990 (J. R. Michael, R Ingram, eds.), San Francisco Press, San Francisco, 1990, p. 21.

    Google Scholar 

  5. R. Shimizu, Z.-J. Ding, Rep. Progr. Phys. 1992, 55, 487.

    Article  CAS  Google Scholar 

  6. L. Reimer, Microchimica Acta [suppl] 1996, 13, 1.

    CAS  Google Scholar 

  7. L. Reimer, E. R. Krefting, in: Use of Monte Carlo Calculations in Electron Probe Microanalysis and Scanning Electron Microscopy (K. F. J. Heinrich et al., eds.), NBS Special Publication 460, U.S. Dept. of Comm., Washington, DC, 1976, p. 45.

    Google Scholar 

  8. H. Seidel in: Rasterelektronen-mikroskopie (L. Reimer, G. Pfefferkorn, eds.), Springer, Berlin Heidelberg New York, 1983, p. 38.

    Google Scholar 

  9. H. Kulenkampff, W. Spyra, Z Phys. 1954, 137, 416

    Article  CAS  Google Scholar 

  10. H. Kanter, Ann. Physik 1957, 20, 144.

    Article  CAS  Google Scholar 

  11. V. Stary, Microchimica Acta [Suppl.] 1996, 13, 559.

    CAS  Google Scholar 

  12. H. Niedrig, J. Appi Phys. 1982, 53, R15.

    Article  CAS  Google Scholar 

  13. H. Niedrig, P. Sieber, Z. Angew. Phys. 1971, 31, 27.

    CAS  Google Scholar 

  14. G. Neubert, S. Rogaschewski, J. Phys. D: Appi. Phys. 1984, 17, 2439.

    Google Scholar 

  15. V. E. Cosslett, R. N. Thomas, Br. J. Appi. Phys. 1964, 75, 883, 1283.

    Article  Google Scholar 

  16. V. E. Cosslett, R. N. Thomas, Br. J. Appi. Phys. 1965, 16, 779.

    Article  CAS  Google Scholar 

  17. T. Dolezel, Diploma Thesis, Charles University, Prague, 1982.

    Google Scholar 

  18. M. E. Riley, C. J. MacCallum, F. Biggs, At. Data Nucl. Data Tables 1975, 15, 443.

    Article  CAS  Google Scholar 

  19. D. Liljequist, J. Phys. D: Appi. Phys. 1983, 16, 1567.

    Article  CAS  Google Scholar 

  20. M. J. Berger, S. M. Seltzer, Nuclear Science Series Report No. 39, NAS-NRC Publication No. 1133, National Academy of Science, Washington, DC, 1964, p. 205.

    Google Scholar 

  21. T. S. Rao-Sahib, D. B. Wittry, J. Appl. Phys 1974, 45, 5060.

    Article  CAS  Google Scholar 

  22. D. C. Joy, S. Luo, Scanning 1989, 11, 176.

    Article  Google Scholar 

  23. D. Liljequist, J. Phys. D: Appl. Phys. 1978, 11, 839.

    Article  CAS  Google Scholar 

  24. A. Spalek, Nucl. Instr. Meth. 1982, 198, 399.

    Article  CAS  Google Scholar 

  25. R. Shimizu, Y. Kataoka, T. Matsukawa, T. Ikuta, K. Murata, H. Hashimoto, J. Phys. D: Appl. Phys. 1975, 8, 820.

    Article  CAS  Google Scholar 

  26. R. Shimizu, Y. Kataoka, T. Ikuta, T. Koshikawa, H. Hashimoto, J. Phys. D: Appl. Phys. 1976, 9, 101.

    Article  CAS  Google Scholar 

  27. N. R. Draper, H. Smith, Applied Regression Analysis, Willey, New York, 1966.

    Google Scholar 

  28. L. Reimer, K. Brockmann, U. Rhein, J. Phys. D: Appl. Phys. 1978, 11, 2151.

    Google Scholar 

  29. D. L. Misell, Adv. Electr. Phys. 1973, 32, 63.

    Google Scholar 

  30. C. J. Tung, J. C. Ashley, R. H. Ritchie, Surf. Sci. 1979, 81, All.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Wien

About this paper

Cite this paper

Starý, V. (1998). Assessment of the Inelastic Scattering Model in Monte-Carlo Simulations. In: Love, G., Nicholson, W.A.P., Armigliato, A. (eds) Modern Developments and Applications in Microbeam Analysis. Mikrochimica Acta Supplement, vol 15. Springer, Vienna. https://doi.org/10.1007/978-3-7091-7506-4_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-7506-4_46

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83106-9

  • Online ISBN: 978-3-7091-7506-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics