Skip to main content

Kinetic Transport Models for Semiconductors

  • Chapter
Semiconductor Equations

Abstract

In this Chapter we shall derive and discuss transport equations, which model the flow of charge carriers in semiconductors. The common feature of these equations is that they describe the evolution of the phase space (position-momentum space) density function of the ensemble of negatively charged conduction electrons or, resp., positively charged holes, which are responsible for the current flow in semiconductor crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Arnold, P. Degond, P. A. Markowich, Η. Steinrück: The Wigner-Poisson Equation in a Crystal. Applied Mathematics Letters 2, 187–191 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Arnold, P. A. Markowich: The Periodic Quantum Liouville-Poisson Problem. Boll. U.M.I. (1989) (to appear).

    Google Scholar 

  3. A. Arnold, H. Steinrück: The Electromagnetic Wigner Equation for an Electron with Spin. ZAMP (1989) (to appear).

    Google Scholar 

  4. N. C. Ashcroft, Ν. D. Mermin: Solid State Physics. Holt-Sounders, New York (1976).

    Google Scholar 

  5. C. Bardos, P. Degond: Global Existence for the Vlasov-Poisson Equation in Three Space Variables with Small Initial Data. Ann. Inst. Henri Poincare, Analyse Non-linéaire 2, 101–118 (1985).

    MathSciNet  MATH  Google Scholar 

  6. C. Bender, S. Orszag: Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill, New York (1977).

    Google Scholar 

  7. G. F. Bertsch: Heavy Ion Dynamics at Intermediate Energy. Report, Cyclotron Laboratory and Physics Department, Michigan State University, East Lansing, MI 48824, USA (1978).

    Google Scholar 

  8. J. S. Blakemore: Semiconductor Statistics. Pergamon Press, Oxford (1962).

    MATH  Google Scholar 

  9. Ν. N. Bogoliubov: Problems of a Dynamical Theory in Statistical Physics. In: Studies in Statistical Mechanics, Vol. I (J. de Boer, G. E. Uhlenbeck, eds.). North-Holland, Amsterdam (1962), p. 5.

    Google Scholar 

  10. M. Born, H. S. Green: A General Kinetic Theory of Fluids. Cambridge University Press, Cambridge (1949).

    Google Scholar 

  11. F. Brezzi, P. A. Markowich: The Three-Dimensional Wigner-Poisson Problem: Existence, Uniqueness and Approximation. Report, Centre de Mathématiques Appliquées, Ecole Polytechnique, F-91128 Palaiseau, France (1989).

    Google Scholar 

  12. P. Carruthers, F. Zachariasen: Quantum Collision Theory with Phase-Space Distributions. Reviews of Modem Physics 55, 245–285 (1983).

    Article  MathSciNet  Google Scholar 

  13. C. Cercignani: The Boltzmann Equation and Its Applications (Applied Mathematical Sciences, Vol. 67). Springer-Verlag, Berlin (1988).

    Google Scholar 

  14. J. Cooper: Galerkin Approximations for the One-Dimensional Vlasov-Poisson Equation. Math. Method, in Appl. Sci. 5, 516–529 (1983).

    Article  MATH  Google Scholar 

  15. R. Dautrey, J. L. Lions: Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques: Tome 3’sson, Paris (1985).

    Google Scholar 

  16. P. Degond, P. A. Marko wich: A Quantum Transport Model for Semiconductors: The Wigner-Poisson Problem on a Bounded Brillouin Zone. M 2 AN (to appear).

    Google Scholar 

  17. P. Degond, P. A. Markowich: A Mathematical Analysis of Quantum Transport in Three-Dimensional Crystals. Report, Centre de Math. Appl., Ecole Polytechnique, F-91128 Palaiseau, France (1989).

    Google Scholar 

  18. F. Nier: Etudes des Solutions Stationnaires de l’Équation de Wigner. Manuscript, Centre de Mathématiques Appliquées, Ecole Polytechnique, F-91128 Palaiseau, France (1989).

    Google Scholar 

  19. F. Nier: Existence d’une Solution Pour un Système Mono-dimensionelle d’Equations de Schrödinger et des Poisson Couplées. Manuscript, Centre de Mathématiques Appliquées, Ecole Polytechnique, F-91128 Palaiseau, France (1989).

    Google Scholar 

  20. S. de Groot: La Transformation de Weyl et la Fonction de Wigner: Use Forme Alternative de la Méchanique Quantique. Lex Presses de l’Université de Montréal, Montreal (1974).

    Google Scholar 

  21. R. Di Perna, P. L. Lions: Global Solutions of Vlasov-Poisson Type Equations. Report 8824, CEREMADE, Université Paris-Dauphine, F-15115 Paris, France (1989).

    Google Scholar 

  22. R. Di Perna, P. L. Lions: Global Weak Solutions of Vlasov-Maxwell Systems. Report 8817, CEREMADE, Université Paris-Dauphine, F-15115 Paris, France (1989).

    Google Scholar 

  23. R. Di Perna, P. L. Lions: On the Cauchy Problem for Boltzmann Equations: Global Existence and Weak Stability. Report CEREMADE, Université Paris-Dauphine, F-75775 Paris, France (1988).

    Google Scholar 

  24. D. K. Ferry, N. C. Kluksdahl, C. Ringhofer: Absorbing Boundary Conditions for the Simulation of Quantum Tunneling Phenomena. Transport Equ. and Statist. Phys. (to appear).

    Google Scholar 

  25. R. P. Feynman: The Feynman Lectures on Physics 3: Quantum Mechanics. Addison-Wesley, Reading (1965).

    Google Scholar 

  26. H. Hofmann: Das Elektromagnetische Feld. Springer-Verlag, Wien-New York (1982).

    Google Scholar 

  27. R. L. Hudson: When Is the Wigner Quasiprobability Nonnegative?. Reports on Math. Physics 6, 249–252 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  28. L. P. Kadanoff, G. Baym: Quantum Statistical Mechanics: Green’s Function Methods in Equilibrium and Non-Equilibrium Problems. Benjamin, New York (1962).

    Google Scholar 

  29. T. Kato: Perturbation Theory for Linear Operators. Springer-Verlag, New York (1966).

    MATH  Google Scholar 

  30. J. G. Kirkwood: J. Chem. Phys. 14, 180 (1946).

    Article  Google Scholar 

  31. C. Kittel: Introduction to Solid State Physics. J. Wiley & Sons, New York (1968). [1.32] N. C. Kluksdahl, A. M. Kriman, D. K. Ferry, C. Ringhofer: Self-Consistent Study of the Resonant Tunneling Diode. Phys. Rev. Β (to appear).

    Google Scholar 

  32. N. A. Krall, A. W. Trivelpiece: Principles of Plasma Physics. McGraw-Hill, New York (1973).

    Google Scholar 

  33. L. D. Landau, E. M. Lifschitz: Lehrbuch der Theoretischen Physik, 3: Quantenmechanik. Akademie-Verlag, Berlin (1960).

    Google Scholar 

  34. L. D. Landau, E. M. Lifschitz: Lehrbuch der Theoretischen Physik, 1: Mechanik, 2nd edn. Akademie-Verlag, Berlin (1963).

    Google Scholar 

  35. I. B. Levinson: Translational Invariance in Uniform Fields and the Equation for the Density Matrix in the Wigner Representation. Soviet Physics JETP 30, 362–367 (1970).

    MathSciNet  Google Scholar 

  36. P. A. Markowich: The Stationary Semiconductor Device Equations. Springer-Verlag, Wien-New York (1986).

    Google Scholar 

  37. P. Α. Markowich: On the Equivalence of the Schrödinger and the Quantum Liouville Equations. Math. Meth. in the Appl. Sci. 11, 459–469 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  38. P. A. Markowich, C. A. Ringhofer: An Analysis of the Quantum Liouville Equations. ZAMM 69, 121–127 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  39. A. Messiah: Quantum Mechanics, North-Holland, Amsterdam (1965).

    Google Scholar 

  40. H. Neunzert: The Nuclear Vlasov Equation—Methods and Results that Cann(ot) be Taken Over from the ‘Classical’ Case. Proc. Workshop on Fluid Dynamical Approaches to the Many-Body Problem: Fundamental and Mathematical Aspects. Societa Italiana di Fisica, (1984).

    Google Scholar 

  41. H. Neunzert: An Introduction to the Nonlinear Boltzmann-Vlasov Equation. In: Lecture Notes in Math., Vol. 1048. Springer-Verlag, Berlin (1984).

    Google Scholar 

  42. B. Niclot, P. Degond, F. Poupaud: Deterministic Particle Simulations of the Boltzmann Transport Equation of Semiconductors. J. Comp. Phys. 78, 313–350 (1988).

    Article  MATH  Google Scholar 

  43. F. Poupaud: On a System of Nonlinear Boltzmann Equations of Semiconductor Physics. SIAM J. Math. Anal, (to appear).

    Google Scholar 

  44. M. Reed, B. Simon: Methods of Modern Mathematical Physics I: Functional Analysis. Academic Press, New York (1972).

    MATH  Google Scholar 

  45. M. Reed, B. Simon: Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness. Academic Press, New York (1975).

    MATH  Google Scholar 

  46. M. Reed, B. Simon: Methods of Modern Mathematical Physics IV: Analysis of Operators. Academic Press, New York (1978).

    MATH  Google Scholar 

  47. L. Reggiani (ed.): Hot Electron Transport in Semiconductors. Springer-Verlag, Berlin (1985).

    Google Scholar 

  48. C. Ringhofer: A Spectral Method for Numerical Simulation of Quantum Tunneling Phenomena. SIAM J. Num. Anal, (to appear).

    Google Scholar 

  49. W. Rudin: Real and Complex Analysis, 2nd ed. McGraw-Hill, New York (1974).

    MATH  Google Scholar 

  50. S. Selberherr: Analysis and Simulation of Semiconductor Devices. Springer-Verlag, Wien-New York (1984).

    Google Scholar 

  51. A. Shubin: Pseudodifferential Operators and Spectral Theory. Springer-Verlag, New York (1986).

    Google Scholar 

  52. H. Steinrück: Asymptotic Analysis of the Quantum Liouville Equation. Report, Inst. f. Ang. u. Num. Mathematik, TU-Wien, Austria (1988).

    Google Scholar 

  53. Η. Steinrück: The Wigner-Poisson Problem in a Crystal: Existence, Uniqueness, Semiclassical Limit in the One-Dimensional Case. Report, Inst. f. Ang. u. Num. Mathematik, TU-Wien, Austria (1989).

    Google Scholar 

  54. H. Steinrück: The One-Dimensional Wigner Poisson Problem and Its Relation to the Schrödinger Poisson Problem. Report, Inst. f. Ang. u. Num. Math., TU-Wien, Austria (1989).

    Google Scholar 

  55. H. Steinrück: Private communication (1989).

    Google Scholar 

  56. S. M. Sze: Physics of Semiconductor Devices. J. Wiley & Sons, New York (1981).

    Google Scholar 

  57. V. I. Tatarskii: The Wigner Representation of Quantum Mechanics, Sov. Phys. Usp. 26, 311–327 (1983).

    Article  MathSciNet  Google Scholar 

  58. M. E. Taylor: Pseudodifferential Operators. Princeton University Press, Princeton (1981).

    MATH  Google Scholar 

  59. F. Treves: Introduction to Pseudodifferential and Fourier Integral Operators, Vol. 1: Pseudodifferential Operators. Plenum Press, New York (1980).

    MATH  Google Scholar 

  60. F. Treves: Introduction to Pseudodifferential and Fourier Integral Operators, Vol. 2: Fourier Integral Operators. Plenum Press, New York (1980).

    MATH  Google Scholar 

  61. S. Ukai, T. Okabe: On the Classical Solution in the Large in Time of the Two-Dimensional Vlasov Equation. Osaka J. of Math. 15, 245–261 (1978).

    MathSciNet  MATH  Google Scholar 

  62. E. Wigner: On the Quantum Correction for Thermodynamic Equilibrium. Physical Review 40, 749–759 (1932).

    Article  MATH  Google Scholar 

  63. J. Yvon: La Théorie Statistique des Fluides (Actualités Scientifiques et Industrielles, No. 203). Hermann, Paris (1935).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Wien

About this chapter

Cite this chapter

Markowich, P.A., Ringhofer, C.A., Schmeiser, C. (1990). Kinetic Transport Models for Semiconductors. In: Semiconductor Equations. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6961-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6961-2_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82157-2

  • Online ISBN: 978-3-7091-6961-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics