Skip to main content
  • 522 Accesses

Abstract

Concern about the future of industrial societies has stimulated intensive discussions around the world and has led to a number of recommendations. Leading the list is the necessity for a speedy and permanent turn towards resource-sparing and environmentally compatible technologies and innovations. Incentives for this development include the exponential growth of the world’s population, the increasing environmental burdens and our diminishing primary resources. A solution to these problems presupposes ongoing improvements in our technical competence and its optimum utilization.

The following points are to be viewed as especially important fields of application for microtechnologies and nanotechnologies: communication, information/education/entertainment, transportation energy, the environment, buildings/housing/ industrial plants, production, safety/security, medicine and health.

For these fields of application the technological branches of new materials, sensor and actuator technology, microelectronics, optoelectronics, and information storage, electrooptical and electromechanical transducers, generation, distribution and storage of electrical energy, information engineering, intelligence functions and software have key effects that are both wide-ranging and enduring. In coming years, research and development must concentrate on these technological branches in particular. Industry is responsible first and foremost for innovations. It must above all: (i) increase innovative power by more effective cooperation between research, development production and marketing and (ii) improve the climate of innovation by working in cooperation with academia and government.

An improvement in the innovative climate requires a reorientation of the classical division of the research and development process and more effective forms of cooperation between government, national research establishment and industry. Therefore, in order to better convert our scientific competence into economically measurable results, nationally supported research and research in the private sector must move appreciably closer together. It is beyond human capabilities to anticipate technological developments over a relatively long period of time (e.g. a century). Such capabilities are adequate enough at best to obtain information for the next 10 to 20 years on the basis of currently existing knowledge and results, by the use of extrapolation and scenario techniques. The implementation probabilities decrease very rapidly with increasing period of consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bachmann DG (1994) Nanotechnologie. VDI

    Google Scholar 

  • Benecke W, Petzold HC (1991) Proceedings IEEE: Micro Electro Mechanical Systems. Travemünde

    Google Scholar 

  • Bley P, Menz W (1993) Aufbruch in die Mikrowelt. Phys Bl 49: 179–184

    CAS  Google Scholar 

  • Buck P (1990) Biosensor Technology. Marcel Dekker: New York

    Google Scholar 

  • Bulst WE (1994) Developments to Watch in Surface Acoustic Wave Technology. Siemens Rev: 2–6

    Google Scholar 

  • Bundesministerium für Forschung und Entwicklung (1992) Biosensorik.Bonn

    Google Scholar 

  • Bundesministerium für Forschung und Technologie (1994) Mikrosystemtechnik. Bonn

    Google Scholar 

  • Bundesministerium für Forschung und Entwicklung (1994) Produktionsintegrierter Um-weltschutz. Bonn

    Google Scholar 

  • Corcoran E (1991) Nanotechnik. Spektrum Wiss Jan 1991: 76–86

    Google Scholar 

  • de Raolj NF (1991) Current status and future trends of silicon microsensors. Proceedings of Transducers. San Francisco, 1991, pp 79–86

    Google Scholar 

  • Engineering a Small World; From Atomic Manipulation to Microfabrication Science (1991) 254: 1300–1342

    Google Scholar 

  • Heuberger A (1989) Mikromechanik. Springer: Berlin

    Book  Google Scholar 

  • Howe RT, Muller RS, Gabriel KJ, Trimmer WSN (1990) Silicon Micromechanics: Sensors and Actuators on Chip. IEEE- Spektrum, July 1990: 29–37

    Google Scholar 

  • Kirk WP, Reed MA (1992) Nanostructures and Me-soscopic Systems. Academic Press: New York

    Google Scholar 

  • Kroy W, Fuhr G, Heuberger A (1992) Mikrosys-temtechnik. Spektrum Wiss May 1992: 98–115

    Google Scholar 

  • Kroy W, Heuberger A, Sehrfeld W (1988) Nerven und Sinne für die Chips. High Tech 4: 22–36

    Google Scholar 

  • McEntee J (1993) Start Making Microsensors. Phys World Dec 1993: 33–37

    Google Scholar 

  • Menz W, Bley P (1993) Mikrosystemtechnik. VCH: Weinheim

    Google Scholar 

  • Muller RS, Howe RT, Senturia StD, Smith RL, White RM (1991) Microsensors. IEEE Press: New York

    Google Scholar 

  • Peterson K (1978) Dynamic Micromechanics of Silicon. IEEE Trans Electron Devices ED-25: 1241–1250

    Article  Google Scholar 

  • Reed MA (1993) Quantenpunkte. Spektrum Wiss März 1993: 52–57

    Google Scholar 

  • Renneberg R (1992) Molekulare Erkennung mittels Immuno-und Rezeptorsensoren. Spektrum Wiss Sept 1992: 103–112

    Google Scholar 

  • Scheller F, Schubert F (1989) Biosensoren. Birkhäuser: Basel

    Google Scholar 

  • Scheller F, Schubert F, Pfeiffer D (1992) Biosensoren. Enzym-und Zellsensoren: Anwendungen, Trends und Perspektiven. Spektrum Wiss Sept 1992: 99–103

    Google Scholar 

  • Scheper Th (1992) Wärme-und Lichtsignale aus dem Bioreaktor. Spektrum Wiss Sept 1992: 103–144

    Google Scholar 

  • Stix G (1991) Trends in Micromechanics “Micron Machinations”. Sci Am Nov 1991: 73–82

    Google Scholar 

  • Weisburch C, Vinter B (1991) Quantum Semiconductor Structures: Fundamentals and Applications. Academic Press: New York

    Google Scholar 

  • Wise KD, Najafi N (1991) The coming opportunities in microsensor systems. Proceedings of Transducers. San Francisco, pp 2–7

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this chapter

Cite this chapter

Meixner, H. (2003). Sensors and Sensing: An Engineer’s View. In: Barth, F.G., Humphrey, J.A.C., Secomb, T.W. (eds) Sensors and Sensing in Biology and Engineering. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6025-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6025-1_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7287-2

  • Online ISBN: 978-3-7091-6025-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics