Skip to main content

Impairment of cerebral glucose metabolism parallels learning and memory dysfunctions after intracerebral streptozotocin

  • Chapter
Alzheimer’s Disease. Epidemiology, Neuropathology, Neurochemistry, and Clinics

Part of the book series: Key Topics in Brain Research ((KEYTOPICS))

Summary

In early-onset Alzheimer’s disease, the cerebral glucose metabolism is disturbed in a characteristic manner. Here, we attempted to mimick these alterations by intracerebral injection of the pancreatic islet cell toxin streptozotocin (STZ) into the rat brain ventricles. This treatment resulted in a reduced arteriovenous difference (AVD) of glucose, an increased AVD of lactate, whereas the AVDs of oxygen and carbon dioxide remained unchanged. In addition, learning and memory functions were impaired. These alterations may be related to a disturbance of the local action of insulin on the brain. Furthermore, the approach reported here may provide a model for the study of the early pathogenetic events of Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alpert S, Hanahan D, Teitelman G (1988) Hybrid insulin genes reveal a developmental lineage for pancreatic endocrine cells and imply a relationship with neurons. Cell 53: 295–308

    Article  PubMed  CAS  Google Scholar 

  • Baskin DG, Figlewicz DP, Woods SC, Porte D, Dorsa DM (1987) Insulin in the brain. Ann Rev Physiol 49: 335–347

    Article  CAS  Google Scholar 

  • Bolaffi JL, Nagamatsu S, Harris J, Grodsky GM (1987) Protection by thymidine, an inhibitor of polyadenosine diphosphate ribosylation, of streptozotocin inhibition of insulin secretion. Endocrinology 120: 2117–2122

    Article  PubMed  CAS  Google Scholar 

  • Boyd FT, Clarke DW, Muther TF, Raizada MK (1985) Insulin receptors and insulin modulation of norepinephrine uptake in neuronal cultures from rat brain. J Biol Chem 260: 15880–15884

    PubMed  CAS  Google Scholar 

  • Clarke DW, Mudd L, Boyd FT, Fields M, Raizada MK (1986) Insulin is released from rat brain neuronal cells in culture. J Neurochem 47: 831–836

    Article  PubMed  CAS  Google Scholar 

  • Corp ES, Woods SC, Porte D, Dorsa DM, Figlewicz DP, Baskin DG (1986) Localization of 125I-insulin binding sites in the rat hypothalamus by quantitative autoradiography. Neurosci Lett 70: 17–22

    Article  PubMed  CAS  Google Scholar 

  • Danguir J, Nicolaidis S (1984) Chronic cerebroventricular infusion of insulin causes selective increase of slow wave sleep in rats. Brain Res 306: 97–103

    Article  PubMed  CAS  Google Scholar 

  • Fram RJ, Marinus MG, Volkert MR (1988) Gene expression in E. coli after treatment with streptozotocin. Mutat Res 198: 45–51

    Article  PubMed  CAS  Google Scholar 

  • Havrankova J, Roth J, Brownstein M (1978) Insulin receptors are widely distributed in the central nervous system of the rat. Nature 272: 827–829

    Article  PubMed  CAS  Google Scholar 

  • Hill JM, Lesniak MA, Pert CB, Roth J (1986) Autoradiographic localization of insulin receptors in rat brain: prominence in olfactory and limbic areas. Neuroscience 17: 1127–1138

    Article  PubMed  CAS  Google Scholar 

  • Hoyer S, Nitsch R (1989) Cerebral excess release of neurotransmitter amino acids subsequent to reduced cerebral glucose metabolism in early-onset dementia of Alzheimer type. J Neural Transm 75: 227–232

    Article  PubMed  CAS  Google Scholar 

  • Hoyer S, Oesterreich K, Wagner O (1988) Glucose metabolism as the site of the primary abnormality in early-onset dementia of Alzheimer type? J Neurol 235: 143–148

    Article  PubMed  CAS  Google Scholar 

  • Hussin AH, Skett P (1988) Lack of effect of insulin in hepatocytes isolated from streptozotocin-diabetic male rats. Biochem Pharmacol 37: 1683–1689

    Article  PubMed  CAS  Google Scholar 

  • Junod A, Lambert AE, Stauffacher W, Renold AE (1969) Diabetogenic action of streptozotocin: relationship of dose to metabolic response. J Clin Invest 48: 2119–2139

    Article  Google Scholar 

  • Kadowaki T, Kasuga M, Akanuma Y, Ezaki O, Takaku F (1984) Decreased autophosphorylation of the insulin receptor-kinase in streptozotocin diabetic rats. J Biol Chem 259: 14208–14216

    PubMed  CAS  Google Scholar 

  • Kolb-Bachofen V, Epstein S, Kiesel U, Kolb H (1988) Low-dose streptozotocininduced diabetes in mice. Diabetes 37: 21–27

    Article  PubMed  CAS  Google Scholar 

  • Kyriakis JM, Hausman RE, Peterson SW (1987) Insulin stimulates choline acetyltransferase activity in cultured embryonic chicken retina neurons. Proc Natl Acad Sci USA 84: 7463–7467

    Article  PubMed  CAS  Google Scholar 

  • Mayer G, Nemeth G, Hoyer S (1988) Psychometric altersabhängiger Aufinerksamkeitsveränderungen — Darstellung an der Ratte. Z Gerontol 21: 87–92

    PubMed  CAS  Google Scholar 

  • Nemeth G, Mayer G, Hoyer S (1989) A new psychometric test of attention-related behaviour in rats; its validity in the aging process. Arch Gerontol Geriatr 8: 29–36

    Article  PubMed  CAS  Google Scholar 

  • Palovcik RA, Phillips MI, Kappy MS, Raizada MK (1984) Insulin inhibits pyramidal neurons in hippocampal slices. Brain Res 309: 187–191

    Article  PubMed  CAS  Google Scholar 

  • Pellegrino DA, Miletich DJ, Albrecht RF (1987) Effects of superfused insulin on cerebral cortical glucose utilization in awake goats. Am J Physiol 253 (Endocrinol Metab 16): E418 - E427

    Google Scholar 

  • Phillips ME, Coxon RV (1976) Effect of insulin and phenobarbital on uptake of 2-deoxyglucose by brain slices and hemidiaphragms. J Neurochem 27: 643–645

    Article  PubMed  CAS  Google Scholar 

  • Rinaudo MT, Curto M, Bruno R (1985) Effect of insulin on the pyruvate dehydrogenase complex in the rat brain. Ital J Biochem 34: 229–238

    PubMed  CAS  Google Scholar 

  • Rosen OM (1987) After insulin binds. Science 237: 1452–1458

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi T, Bray GA (1987) Intrahypothalamic injection of insulin decreases firing rate of sympathetic nerves. Proc Natl Acad Sci USA 84: 2012–2014

    Article  PubMed  CAS  Google Scholar 

  • Sauter A, Goldstein M, Engel J, Keta K (1983) Effect of insulin on central catecholamines. Brain Res 260: 330–333

    Article  PubMed  CAS  Google Scholar 

  • Schechter R, Holtzclaw L, Sadiq F, Kahn A, Devaskar S (1988) Insulin synthesis by isolated rabbit neurons. Endocrinology 123: 505–513

    Article  PubMed  CAS  Google Scholar 

  • Smit AB, Vreugdenhil E, Ebberink RHM, Geraerts WPH, Klootwijk J, Joosse J (1988) Growth-controlling molluscan neurons produce the precursor of an insulin-related peptide. Nature 331: 535–538

    Article  PubMed  CAS  Google Scholar 

  • Steinfelder HJ, Joost HG (1988) Inhibition of insulin-stimulated glucose transport in rat adipocytes by nucleoside transport inhibitors. Febs Lett 227: 215–219

    Article  PubMed  CAS  Google Scholar 

  • Werther GA, Hogg A, Oldfield BJ, McKinley MJ, Fidor R, Allen AM, Mendelsohn FOK (1987) Localization and characterization of insulin receptors in rat brain and pituitary gland using in vitro autoradiography and computerized densitometry. Endocrinology 121: 1562–1570

    Article  PubMed  CAS  Google Scholar 

  • Woods SC, Lotter EC, McKay LD, Ponte D Jr (1979) Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature 282: 503–505

    Article  PubMed  CAS  Google Scholar 

  • Yorek MA, Dunlap JA, Ginsberg BH (1987) Amino acid and putative neurotransmitter transport in human Y79 retinoblastoma cells. J Biol Chem 262: 10968–10993

    Google Scholar 

  • Young WS (1986) Periventricular hypothalamic cells in the rat brain contain insulin mRNA. Neuropeptides 9: 93–97

    Article  Google Scholar 

  • Zucker PF, Archer MC (1988) Streptozotocin toxicity to cultured pancreatic islets of the Syrian hamster. Cell Biol Toxicol 4: 349–357

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Wien

About this chapter

Cite this chapter

Nitsch, R., Mayer, G., Galmbacher, R., Galmbacher, G., Apell, V., Hoyer, S. (1990). Impairment of cerebral glucose metabolism parallels learning and memory dysfunctions after intracerebral streptozotocin. In: Maurer, K., Riederer, P., Beckmann, H. (eds) Alzheimer’s Disease. Epidemiology, Neuropathology, Neurochemistry, and Clinics. Key Topics in Brain Research. Springer, Vienna. https://doi.org/10.1007/978-3-7091-3396-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-3396-5_20

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82197-8

  • Online ISBN: 978-3-7091-3396-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics