Skip to main content

Thermodynamic Theories of Thermoelasticity and Special Cases of Thermoplasticity

  • Chapter
The Constitutive Law in Thermoplasticity

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 281))

  • 146 Accesses

Abstract

The objective of thermodynamics of solids is the determination of the fields of

$$\begin{gathered} density\;\rho ({X_A},t) \hfill \\ motion\;{x_i}({X_A},t) \hfill \\ temperature\;T({X_A},t) \hfill \\ \end{gathered} $$
(1.1)

in all particles of the body and at all times. XA characterizes a particle by its position in reference configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Truesdell, C., Toupin, R.A., The Classical Field Theories Handbuch der Physik III/1, Springer Berlin, Göttingen, Heidelberg, 1967, 226

    Google Scholar 

  2. Truesdell, C., Noll, W., The Non-linear Field Theories of Mechanics Handbuch der Physik 1II/3, Springer Berlin, Heidelberg, New York, 1965, 1

    Google Scholar 

  3. Müller, I., Thermodynamik, Grundlagen der Materialtheorie Bertelsmann Universitätsverlag,Düsseldorf, 1973

    Google Scholar 

  4. Alts, T., A new approach to a thermodynamic theory of fibre-reinforced Thermo-elastic materials with thereto-kinematic constraints, in Mechanics of Structures Media, Ed. A.P.S. Selvadurai, Elsevier Publ. Co., Amsterdam, 1981, part A, 29

    Google Scholar 

  5. Rivlin, R.S., Saunders, D.W., Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber. Phil. Trans. Roy. Soc. London, 243, 251, 1951

    Article  ADS  MATH  Google Scholar 

  6. Clausius, R., Mechanische Wärmetheorie, Vieweg und Sohn, Braunschweig, 1887

    Google Scholar 

  7. Carathéodory, C., Untersuchungen über die Grundlagen der Thermodynamik, Math. Annalen, 67, 355, 1909

    Article  Google Scholar 

  8. Meixner, J., Reik, H.G., Die Thermodynamik der irreversiblen Prozesse in kontinuierlichen Medien mit inneren Umwandlungen, in Handbuch der Physik III/2, Springer Berlin, Heidelberg, New York, 1959

    Google Scholar 

  9. de Groot, S.R., Mazur, J., Non-equilibrium thermodynamics, North Holland ?ubl. Co., Amsterdam, 1962

    Google Scholar 

  10. Coleman, B.D., Noll, W., The thermodynamics of elastic materials with heat-conduction and viscosity, Arch. Rational I.Iech. Anal., 13, 167, 1963

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Müller, I., Die Kältefunktion, eine universelle Funktion in der Thermodynamik viskoser wärmeleitender Flüssigkeiten, Arch. Rational Mech. Anal., 40, 1, 1971

    MATH  Google Scholar 

  12. Müller, I., The coldness, a universal function in thermoelastic bodies, Arch. Rational Mech. Anal., 41, 319, 1971

    MATH  Google Scholar 

  13. Liu, I.-Shih, Method of Lagrange multipliers for exploitation of the entropy principle, Arch. Rational Mech. Anal., 46, 131, 1972

    Google Scholar 

  14. Cattaneo, C., Sulla conduzione della calore, Atti del Sem. mat. e fis. Univ. di Modena, 3, 3, 1948

    Google Scholar 

  15. Müller, I., Zum Paradoxon der•Wärmeleitung, Z. f. Physik, 198, 329, 1967

    Article  MATH  Google Scholar 

  16. Ruggeri, T., Generators of hyperbolic heat eauation in non-linear thermoelasticity, Rend. Sem. Mat. Padova (to appear)

    Google Scholar 

  17. Nakanishi, N., Lattice softening and the origin of SME in shape memory effects in alloys, Ed. Perkins, Plenum Press, N.Y. and London, 147, 1975

    Google Scholar 

  18. Rodriguez, C. and Brown, L.C. The Mechanical Properties of SME Alloys, in She Memory Effects in Alloys. Ed. J. Perkins, Plenum Press, N.Y. and London p. 29, 1975

    Google Scholar 

  19. Müller, I., Wilmanski, K., State functions for a pseudoelastic body, Proc. of Euromech 113 in Grenoble, Villars de Lans,(in press)

    Google Scholar 

  20. Müller, I., Wilmanski, K., A model for phase transition in pseudo-elastic bodies, Il Nuovo Cimento, 57B, 283, 1980

    Article  Google Scholar 

  21. Miller, I., Wilmanski, K., Memory alloys - phenomenology and Ersatzmodel, in Continuum Model of Discrete Systems, Brulin, 0. and Hsieh, R.K.T., Eds., North Holland Publ. Co., 495, 1981

    Google Scholar 

  22. Achenbach, M., Müller, I., Creep and yield in martensitic transformations, Ingenieurarchiv 53, 73, 1983

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Wien

About this chapter

Cite this chapter

Müller, I. (1984). Thermodynamic Theories of Thermoelasticity and Special Cases of Thermoplasticity. In: Lehmann, T. (eds) The Constitutive Law in Thermoplasticity. CISM International Centre for Mechanical Sciences, vol 281. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2636-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2636-3_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-81796-4

  • Online ISBN: 978-3-7091-2636-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics