Skip to main content

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 329))

Abstract

Fronts and eddies in the ocean are intimately linked. Eddies are produced at fronts often by instability processes, while the deformation fields associated with eddy motions can lead to frontogenesis. I shall discuss this interplay between fronts and eddies by examining the instabilities of fronts and by describing the eddies produced by these instabilities at finite amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Federov K.N. 1987. The physical nature and structure of oceanic fronts. Spring- Verlag, Berlin.

    Google Scholar 

  2. Ruddick, B.R. & Turner J.S. 1979. The vertical length scale of double-deffusive intrusions. Deep-Sea Res. 26, 903–913.

    Article  ADS  Google Scholar 

  3. Gill, A.E. Davey, M.K., Johnson E.R. & Linden, P.F. 1986. Rossby adjustment over a step. Journal of Marine Research, 44, 713–738.

    Article  Google Scholar 

  4. Allen, S.E. 1988. Rossby adjustment over a slope PhD thesis University of Cambridge.

    Google Scholar 

  5. Longuet-Higgins, M.S. 1968. On the trapping of waves along a discontinuity of depth in a rotating ocean. J. Fluid Mech. 31, 417–434.

    Article  ADS  Google Scholar 

  6. Hoskins, B.J. & Bretherton F.P. 1972. Atmospheric frontogenesis models: mathematical formulation and solution. J. Atmos. Sci. 29, 11–37.

    Article  ADS  Google Scholar 

  7. Simpson, J.E. & Linden, P.F. 1989. Frontogenesis in a fluid with horizontal density gradients. J. Fluid Mech. 202, 1–16.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Jacquin, D., 1991. Frontogenesis driven by horizontally quadratic distribution of density. J. Fluid Mech. to appear.

    Google Scholar 

  9. Kay, A. 1991. Frontogenesis in gravity-driven flows with non-uniform density gradients. J. Fluid Mech. submitted.

    Google Scholar 

  10. Killworth, P.D. & Stern, M.E. 1982. Instabilities on density-driven boundary currents and fronts. Geophys. Astrophys. Fluid Dyn. 22,1–28.

    Article  ADS  MATH  Google Scholar 

  11. Killworth, P.D., Paldor, N. & Stern, M.E.. 1984. Wave propagation and growth on a surface front in a two-layer geostrophic current. J. Mar. Res. 42,761–785.

    Article  Google Scholar 

  12. Griffiths, R.W. & Linden P.F. 1981. The stability of buoyancy driven coastal currents. Dyn. Atmos. Oceans. 5, 281–306.

    Article  ADS  Google Scholar 

  13. Griffiths, R.W. & Linden P.F. 1982. The influence of a side wall on rotating flow over bottom topography. Geophys. Astrophys. Fluid Dyn. 27, 1–33.

    Article  ADS  Google Scholar 

  14. Sakai, S. 1989. Rossby-Kelvin instability: a new type of ageostrophic instability caused by a resonance between Rossby waves and gravity waves. J. Fluid Mech. 202, 149–176.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Paldor, N. 1983. Linear stability and stable modes of geostrophic fronts. Geophys. Astrophys. Fluid Dyn. 27, 217–228.

    Article  ADS  Google Scholar 

  16. Kubokawa, A. 1985 Instability of a geostrophic front and its energetics. Geophys. Astrophys. Fluid Dyn. 33, 223–257.

    Article  ADS  MATH  Google Scholar 

  17. Griffiths, R.W. & Hopfinger, E.J., 1984. The structure of mesoscale turbulence and horizontal spreading at ocean fronts. Deep Sea Res. 31, 245–269.

    Article  ADS  Google Scholar 

  18. Linden, P.F. & Simpson J.E. 1990. Continuous two-dimensional releases from an elevated source. J. Loss Prev. Process Ind. 3, 82–87.

    Article  Google Scholar 

  19. Griffiths, R.W. & Pearce, A.F. 1985 Instability and eddy pairs on the Leeuwin Current south of Australia. Deep-Sea Res. 32, 1511–1534.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Wien

About this chapter

Cite this chapter

Linden, P.F. (1992). Dynamics of Fronts and Frontal Instability. In: Hopfinger, E.J. (eds) Rotating Fluids in Geophysical and Industrial Applications. International Centre for Mechanical Sciences, vol 329. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2602-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2602-8_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82393-4

  • Online ISBN: 978-3-7091-2602-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics