Skip to main content

Fusion of Image Information under Imprecision and Uncertainty: Numerical Methods

  • Chapter
Data Fusion and Perception

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 431))

Abstract

The aim of this paper is to provide an overview of general characteristics of fusion problems, and to highlight their specificities in image information fusion. We restrict the presentation to the problem of information fusion under imprecision and uncertainty, and to numerical methods to account for these imperfections in the fusion process. An illustrative example in brain imaging is sketched.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Data Fusion Lexicon, Data Fusion Subpanel of the Joint Directors of Laboratories Technical Panel for C3. F. E. White, Code 4202, NOSC, San Diego, CA, 1991.

    Google Scholar 

  2. K.M. Andress and A. C. Kak. Evidence Accumulation and Flow Control in a Hierarchical Spatial Reasoning System. Al Magazine, pages 75–94, 1988.

    Google Scholar 

  3. A. Appriou. Formulation et traitement de l’incertain en analyse multi-senseurs. In Quatorzième Colloque GRETSI, pages 951–954, Juan les Pins, 1993.

    Google Scholar 

  4. L. Aurdal, X. Descombes, H. Maître, I. Bloch, C. Adamsbaum, and G. Kalifa. Fully Automated Analysis of Adrenoleukodystrophy from Dual Echo MR Images: Automatic Segmentation and Quantification. In Computer Assisted Radiology CAR’95, pages 35–40, Berlin, Germany, June 1995.

    Google Scholar 

  5. J. F. Baldwin. Inference for Information Systems Containing Probabilistic and Fuzzy Uncertainties. In L. Zadeh and J. Kacprzyk, editors, Fuzzy Logic and the Management of Uncertainty, pages 353–375. J. Wiley, New York, 1992.

    Google Scholar 

  6. Y. Bar-Shalom and T. E. Fortmann. Tracking and Data Association, 1988.

    Google Scholar 

  7. J. A. Barnett. Computational Methods for a Mathematical Theory of Evidence. In Proc. of 7th IJCAI, pages 868–875, Vancouver, 1981.

    Google Scholar 

  8. E. Benoit and L. Foulloy. Capteurs flous multicomposantes: applications à la reconnaissance des couleurs. In Les Applications des Ensembles Flous, pages 167–176, Nîmes, France, October 1993.

    Google Scholar 

  9. J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New-York, 1981.

    MATH  Google Scholar 

  10. I. Bloch. Image Information Processing using Fuzzy Sets. In World Automation Congress, Soft Computing with Industrial Applications, pages 79–84, Montpellier, France, May 1996.

    Google Scholar 

  11. I. Bloch. Incertitude, imprécision et additivité en fusion de données: point de vue historique. Traitement du Signal, 13 (4): 267–288, 1996.

    MATH  Google Scholar 

  12. I. Bloch. Information Combination Operators for Data Fusion: A Comparative Review with Classification. IEEE Transactions on Systems, Man, and Cybernetics, 26 (1): 52–67, 1996.

    Google Scholar 

  13. I. Bloch. Some Aspects of Dempster-Shafer Evidence Theory for Classification of Multi-Modality Medical Images Taking Partial Volume Effect into Account. Pattern Recognition Letters, 17(8):905–919, 1996.

    Google Scholar 

  14. I. Bloch. Using Fuzzy Mathematical Morphology in the Dempster-Shafer Framework for Image Fusion under Imprecision. In IFSA’97, pages 209–214, Prague, June 1997.

    Google Scholar 

  15. I. Bloch. Fuzzy Relative Position between Objects in Image Processing: a Morphological Approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21 (7): 657–664, 1999.

    Google Scholar 

  16. I. Bloch. On Fuzzy Distances and their Use in Image Processing under Imprecision. Pattern Recognition, 32 (11): 1873–1895, 1999.

    Google Scholar 

  17. I. Bloch. Fusion of Numerical and Structural Image Information in Medical Imaging in the Framework of Fuzzy Sets. In P. Szczepaniak et al., editor, Fuzzy Systems in Medicine, Series Studies in Fuzziness and Soft Computing, pages 429–447. Springer Verlag, 2000.

    Google Scholar 

  18. I. Bloch, L. Aurdal, D. Bijno, and J. Müller. Estimation of Class Membership Functions for Grey-Level Based Image Fusion. In ICIP’97, volume III, pages 268–271, Santa Barbara, CA, October 1997.

    Google Scholar 

  19. I. Bloch and A. Hunter (eds). Fusion: General Concepts and Characteristics (to appear). International Journal of Intelligent Systems, 2000.

    Google Scholar 

  20. I. Bloch and H. Maître. Fusion de données en traitement d’images: modèles d’information et décisions. Traitement du Signal, 11 (6):435–446, 1994.

    MATH  Google Scholar 

  21. I. Bloch and H. Maître. Fuzzy Mathematical Morphologies: A Comparative Study. Pattern Recognition, 28 (9): 1341–1387, 1995.

    MathSciNet  Google Scholar 

  22. I. Bloch and H. Maître. Data Fusion for Decision Making and Diagnosis in Signal and Image Processing (invited conference). In IEEE International Symposium on Diagnosis for Electrical Machines, pages 148–155, Carry-Le-Rouet, France, 1997.

    Google Scholar 

  23. I. Bloch and H. Maître. Data Fusion in 2D and 3D Image Processing: An Overview (invited conference). In X Brazilian Symposium on Computer Graphics and Image Processing, SIBGRAPI, pages 127–134, Campos do Jordao, Brazil, 1997.

    Google Scholar 

  24. I. Bloch and H. Maître. Fusion of Image Information under Imprecision. In B. Bouchon-Meunier, editor, Aggregation and Fusion of Imperfect Information, Series Studies in Fuzziness, pages 189–213. Physica Verlag, Springer, 1997.

    Google Scholar 

  25. I. Bloch and H. Maître. On Some Features of Fuzzy Set Theory for Data Fusion (invited conference). In 9th Symposium on Information Control in Manufacturing INCOM’98, Nancy-Metz, France, June 1998.

    Google Scholar 

  26. I. Bloch, H. Maître, and M. Anvari. Fuzzy Adjacency between Image Objects. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 5 (6): 615–653, 1997.

    MATH  MathSciNet  Google Scholar 

  27. B. Bouchon-Meunier and R. R. Yager. Entropy of Similarity Relations in Questionnaires and Decision Trees. In Second IEEE Int. Conf. on Fuzzy Systems, pages 1225–1230, San Francisco, California, March 1993.

    Google Scholar 

  28. N. Boujemaa, G. Stamon, J. Lemoine, and E. Petit. Fuzzy Ventricular Endocardium Detection with Gradual Focusing Decision. In 14th IEEE EMBS Conference, pages 1893–1894, Paris, France, 1992.

    Google Scholar 

  29. H. Caillol, A. Hillion, and W. Pieczynski. Fuzzy Random Fields and Unsupervised Image Segmentation. IEEE Trans. on Geoscience and Remote Sensing, 31 (4): 801–810, 1993.

    Google Scholar 

  30. B. Charroux. Image Analysis: Interpretation-Guided Cooperation between Segmentation Operators (in French). PhD thesis, University Paris X I, January 1996.

    Google Scholar 

  31. S. Chauvin. Evaluation of Decision Theories Applied to Data Fusion in Satellite Imaging (in French). PhD thesis, ENST and Nantes University, December 1995.

    Google Scholar 

  32. S. Y. Chen, W. C. Lin, and C. T. Chen. Evidential Reasoning based on Dempster-Shafer Theory and its Application to Medical Image Analysis. In SPIE, volume 2032, pages 35–46, 1993.

    Google Scholar 

  33. C. C. Chu and J. K. Aggarwal. The Integration of Image Segmentation Maps using Region and Edge Information. IEEE Trans. on Pattern Analysis and Machine Intelligence, 15 (12): 1241–1252, 1993.

    Google Scholar 

  34. R. Cooke. Uncertainty in Risk Assessment: A Probrabilist’s Manifesto. Reliability in ENgineering and Systems Safety, 23: 277–283, 1988.

    Google Scholar 

  35. R. Cooke. Experts in Uncertainty. Oxford University Press, Oxford, UK, 1991.

    Google Scholar 

  36. R Cucka and A. Rosenfeld. Evidence-based Pattern Matching Relaxation. Technical Report CARTR-623, Center of Automation Research, University of Maryland, May 1992.

    Google Scholar 

  37. B. V. Dasarathy. Fusion Strategies for Enhancing Decision Reliability in Multi-Sensor Environments. Optical Engineering, 35 (3): 603–616, March 1996.

    Google Scholar 

  38. S. Dellepiane, F. Fontana, and G. Vernazza. A Robust Non-Iterative Method for Image Labelling using Context. In IEEE Int. Conf. on Image Processing, volume II, pages 207–211, Austin, Texas, November 1994.

    Google Scholar 

  39. S. Dellepiane, G. Venturi, and G. Vernazza. Model Generation and Model Matching of Real Images by a Fuzzy Approach. Pattern Recognition, 25 (2): 115–137, 1992.

    Google Scholar 

  40. C. Demko, P. Loonis, and E. H. Zahzah. Isomorphism of Fuzzy Structures: a New Method for Image Classification. In 9th Scandinavian Conference on Image Analysis, pages 297–304, Uppsala, Sweden, June 1995.

    Google Scholar 

  41. T. Denceux. A k-nearest Neighbor Classification Rule based on Dempster-Shafer Theory. IEEE Transactions on Systems, Man and Cybernetics, 25 (5): 804–813, 1995.

    Google Scholar 

  42. D. Dubois and H. Prade. Fuzzy Sets and Systems: Theory and Applications. Academic Press, New-York, 1980.

    MATH  Google Scholar 

  43. D. Dubois and H. Prade. A Review of Fuzzy Set Aggregation Connectives. Information Sciences, 36: 85–121, 1985.

    MATH  MathSciNet  Google Scholar 

  44. D. Dubois and H. Prade. Possibility Theory. Plenum Press, New-York, 1988.

    MATH  Google Scholar 

  45. D. Dubois and H. Prade. Representation and Combination of Uncertainty with Belief Functions and Possibility Measures. Compu. Intell., 4: 244–264, 1988.

    Google Scholar 

  46. D. Dubois and H. Prade. Combination of Information in the Framework of Possibility Theory. In M. Al Abidi et al., editor, Data Fusion in Robotics and Machine Intelligence. Academic Press, 1992.

    Google Scholar 

  47. R. K. Varshney (Ed.). Special Issue on Date Fusion. Proceedings of the IEEE, 85(1), 1997.

    Google Scholar 

  48. S. French. Group Consensus Probability Distributions: A Critical Survey. In J. Bernardo et al., editor, Bayesian Statistics, pages 183–201. Elsevier, The Netherlands, 1985.

    Google Scholar 

  49. S. J. Gee and A. M. Newman. RADIUS: Automating Image Analysis Through Model-Supported Exploitation. In Image Understanding Workshop, pages 185–196, Washington D.C., 1993.

    Google Scholar 

  50. T. Géraud, I. Bloch, and H. Maître. Atlas-guided Recognition of Cerebral Structures in MRI using Fusion of Fuzzy Structural Information. In CIMAF’99 Symposium on Artificial Intelligence, pages 99–106, La Havana, Cuba, March 1999.

    Google Scholar 

  51. J. Gordon and E. H. Shortliffe. A Method for Managing Evidential Reasoning in a Hierarchical Hypothesis Space. Artificial Intelligence, 26: 323–357, 1985.

    MATH  MathSciNet  Google Scholar 

  52. L. O. Hall, T. L. Machrzak, and M. S. Silbiger. Obtaining Fuzzy Classification Rules in Segmentation. In IPMU, pages 619–624, Paris, France, 1994.

    Google Scholar 

  53. S. Le Hégarat-Mascle, I. Bloch, and D. Vidal-Madjar. Introduction of Neighborhood Information in Evidenve Theory and Application to Data Fusion of Radar and Optical Images with Partial Cloud Cover. Pattern Recognition, 31 (11): 1811–1823, 1998.

    Google Scholar 

  54. T. L. Huntsberger, C. Rangarajan, and S. Jayaramamurthy. Representation of Uncertainty in Computer Vision using Fuzzy Sets. IEEE Trans. on Computers, C-35(2): 145–156, 1986.

    Google Scholar 

  55. M. C. Jaulent and A. Yang. Application of Fuzzy Pattern Matching to the Flexible Interrogation of a Digital Angiographies Database. In IPMU, pages 904–909, Paris, France, 1994.

    Google Scholar 

  56. E. T. Jaynes. Information Theory and Statistical Mechanics. Physical Review, 106 (4): 620–630, 1957.

    MATH  MathSciNet  Google Scholar 

  57. A. Kandel, M. Schneider, and G. Langholz. Autonomous Fuzzy Intelligent Systems for Image Processing. In IPMU, pages 613–618, Paris, France, 1994.

    Google Scholar 

  58. H. B. Kang and E. L. Walker. Characterizing and Controlling Approximation in Hierarchical Perceptual Grouping. Fuzzy Sets and Sytems, 65: 187–223, 1994.

    Google Scholar 

  59. G. J. Klir and T. A. Folger. Fuzzy Sets, Uncertainty, and Information. Englewood Cliffs, 1988.

    Google Scholar 

  60. R. Krishnapuram and J. M. Keller. Fuzzy Set Theoretic Approach to Computer Vision: an Overview. In IEEE Int. Conf on Fuzzy Systems, pages 135–142, San Diego, CA, 1992.

    Google Scholar 

  61. R. Krishnapuram, J. M. Keller, and Y. Ma. Quantitative Analysis of Properties and Spatial Relations of Fuzzy Image Regions. IEEE Transactions on Fuzzy Systems, 1 (3): 222–233, 1993.

    Google Scholar 

  62. S. Kullback. Information Theory and Statistics. Wiley, New York, 1959.

    MATH  Google Scholar 

  63. R. H. Lee and R. Leahy. Multi-Spectral Classification of MR Images Using Sensor Fusion Approaches. In SPIE Medical Imaging IV: Image Processing, volume 1233, pages 149–157, 1990.

    Google Scholar 

  64. T. Lee, J. A. Richards, and P. H. Swain. Probabilistic and Evidential Approaches for Multisource Data Analysis. IEEE Transactions on Geoscience and Remote Sensing, GE-25(3): 283–293, 1987.

    Google Scholar 

  65. H. Leung. Neural Networks Data Association with Application to Multiple-Target Tracking. Optical Engineering, 35 (3): 693–700, March 1996.

    Google Scholar 

  66. A. De Luca and S. Termini. A Definition of Non-Probabilistic Entropy in the Setting of Fuzzy Set Theory. Information and Control, 20: 301–312, 1972.

    MATH  MathSciNet  Google Scholar 

  67. H. Maître. Entropy, Information and Image. In H. Maître and J. Zinn-Justin, editors, Progress in Picture Processing, Les Houches Session LVIII, pages 881–1115. Springer Verlag, 1996.

    Google Scholar 

  68. H. Maître, I. Bloch, H. Moissinac, and C. Gouinaud. Cooperative Use of Aerial Images and Maps for the Interpretation of Urban Scenes (invited conference). In Ascona Workshop “Automatic Extraction of Man-Made Objects from Aerial and Space Images ”, pages 297–306, Ascona, Suisse, 1995.

    Google Scholar 

  69. G. M. T. Man and J. C. H. Poon. A new Similarity Measurement Method for Fuzzy-Attribute Graph Matching and its Application to Handwritten Character Recognition. In Int. Carnahan Conf. on Security Technology, pages 46–49, Lexington, KY, October 1992.

    Google Scholar 

  70. L. Mascarilla. Rule Extraction based on Neural Networks for Satellite Image interpretation. In SPIE Image and Signal Processing for Remote Sensing, volume 2315, pages 657–668, Rome, Italy, 1994.

    Google Scholar 

  71. S. Mascle, I. Bloch, and D. Vidal-Madjar. Application of Dempster-Shafer Evidence Theory to Unsupervised Classification in Multisource Remote Sensing. IEEE Transactions on Geoscience and Remote Sensing, 35 (4): 1018–1031, 1997.

    Google Scholar 

  72. G. Matheron. La théorie des variables régionalisées et ses applications. Technical Report 5, Ecole des Mines de Paris, Centre de Morphologie Mathématique de Fontainebleau, 1970.

    Google Scholar 

  73. D. McKeown, W. A. Harvey, and J. McDermott. Rule-Based Interpretation of Aerial Imagery. IEEE Trans. on Pattern Analysis and Machine Intelligence, 7 (5): 570–585, 1985.

    Google Scholar 

  74. M. Ménard, E. H. Zahzah, and A. Shahin. Mass Function Assessment: Case of Multiple Hypotheses for the Evidential Approach. In Europto Conf. on Image and Signal Processing for Remote Sensing, Taormina, Italy, September 1996.

    Google Scholar 

  75. N. Milisavljevié, I. Bloch, and M. Acheroy. Characterization of Mine Detection Sensors in Terms of Belief Functions and their Fusion, First Results. In 3rd International Conference on Informatin Fusion–Fusion 2000, volume II, pages ThC3 15–22, Paris, France, jul 2000.

    Google Scholar 

  76. N. Milisavljevic, I. Bloch, and M. Acheroy. A First Step towards Modeling and Combining Mine Detection Sensors within Dempster-Shafer Framework. In IC-Al2000, volume II, pages 745–752, Las Vegas, Nevada, jun 2000.

    Google Scholar 

  77. N. Milisavljevic, I. Bloch, and M. Acheroy. Modeling, Combining and Discounting Mine Detection Sensors within Dempster-Shafer Framework. In SPIE Detection and Remediation Technologies for Mines and Minelike Targets V, A.C.Dubey, J.F.Harvey, J.T. Broach, R.E.Dugan Eds., volume 4038, pages 1461–1472, 2000.

    Google Scholar 

  78. R. E. Neapolitan. A Survey of Uncertain and Approximate Inference. In L. Zadeh and J. Kaprzyk, editors, Fuzzy Logic for the Management of Uncertainty, pages 55–82. J. Wiley, New York, 1992.

    Google Scholar 

  79. H. Ogawa. A Fuzzy Relaxation Technique for Partial Shape Matching. Pattern Recognition Letters, 15: 349–355, 1994.

    Google Scholar 

  80. S. K. Pal. Fuzzy Set Theoretic Measures for Automatic Feature Evaluation. Information Science, 64: 165–179, 1992.

    MATH  Google Scholar 

  81. J. Pearl. Fusion, Propagation, and Structuring in Belief Networks. Artificial Intelligence, 29: 241–288, 1986.

    MATH  MathSciNet  Google Scholar 

  82. W. Pedrycz. Fuzzy Sets in Pattern Recognition: Methodology and Methods. Pattern Recognition, 23 (1/2): 121–146, 1990.

    Google Scholar 

  83. A. Perchant, C. Boeres, I. Bloch, M. Roux, and C. Ribeiro. Model-based Scene Recognition Using Graph Fuzzy Homomorphism Solved by Genetic Algorithm. In GbR’99 2nd International Workshop on Graph-Based Representations in Pattern Recognition, pages 61–70, Castle of Haindorf, Austria, 1999.

    Google Scholar 

  84. E. Piat. Fusion de croyances dans le cadre combiné de la logique des propositions et de la théorie des probabilités, application à la reconstruction de scène en robotique mobile. PhD thesis, Université de Technologie de Compiègne, 1996.

    Google Scholar 

  85. A. Ralescu and R. Hartani. Modeling the Perception of Facial Expressions from Face Photographs. In 10th Fuzzy System Symposium, pages 405–408, Ozaka, Japan, June 1994.

    Google Scholar 

  86. H. S. Ranganath and L. C. Chipman. Fuzzy Relaxation Approach for Inexact Scene Matching. Image and Vision Computing, 10 (9): 631–640, 1992.

    Google Scholar 

  87. N. S. V. Rao and S. S. Iyengar. Distributed Decision Fusion under Unknown Distributions. Optical Engineering, 35 (3): 617–624, March 1996.

    Google Scholar 

  88. J. B. Romine and E. W. Kamen. Modeling and Fusion of Radar and Imaging Sensor Data for Target Tracking. Optical Engineering, 35 (3): 659–673, March 1996.

    Google Scholar 

  89. A. Rosenfeld. Fuzzy Digital Topology. Information and Control, 40: 76–87, 1979.

    MATH  MathSciNet  Google Scholar 

  90. A. Rosenfeld. The Fuzzy Geometry of Image Subsets. Pattern Recognition Letters, 2: 311–317, 1984.

    Google Scholar 

  91. F. Russo and G. Ramponi. An Image Enhancement Technique based on the FIRE Operator. In IEEE Im. Conf. on Image Processing, volume I, pages 155–158, Washington DC, 1995.

    Google Scholar 

  92. F. Salzenstein and W. Pieczynski. Unsupervised Bayesian Segmentation using Hidden Fuzzy Markov Fields. In IEEE Int. Conf. on Acoustics, Speech and Signal Procesing, Detroit, Michigan, 1995.

    Google Scholar 

  93. G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, 1976.

    Google Scholar 

  94. J. C. Simon. From Pixels to Features. V-X, North Holland, Amsterdam, 1989.

    Google Scholar 

  95. P. Smets. The Combination of Evidence in the Transferable Belief Model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 (5): 447–458, 1990.

    Google Scholar 

  96. P. Smets. Belief Functions: The Disjunctive Rule of Combination and the Generalized Bayesian Theorem. International Journal of Approximate Reasoning, 9: 1–35, 1993.

    MATH  MathSciNet  Google Scholar 

  97. P. Smets. The Transferable Belief Model for Uncertainty Representation. Technical Report. TR/IRIDIA/95–23, IRIDIA, Université Libre de Bruxelles, Bruxelles, Belgium, 1995.

    Google Scholar 

  98. Léa Sombé. Raisonnements sur des informations incomplètes en intelligence artificielle. Teknea, Marseille, 1989.

    Google Scholar 

  99. H. E. Stephanou and S. Y. Lu. Measuring Consensus Effectiveness by a Generalized Entropy Criterion. In First Conference on Artificial Intelligence Applications, pages 518–523, Denver, December 1984.

    Google Scholar 

  100. T. M. Strat. Decision Analysis using Belief Functions. Technical Note 472, SRI, September 1989.

    Google Scholar 

  101. D. Y. Suh, R. M. Mersereau, R. L. Eisner, and R. I. Pettigrew. Automatic Boundary Detection on Cardiac Magnetic Resonance Image Sequences for Four Dimensional Visualization of the Left Ventricle. In First Conference on Visualization in Biomedical Computing, pages 149–156, Atlanta GE, 1990.

    Google Scholar 

  102. H. Tahani and J. M. Keller. Information Fusion in Computer Vision Using the Fuzzy Integral. IEEE Transactions on System, Man and Cybernetics, 20 (3): 733–741, 1990.

    Google Scholar 

  103. S. C. A. Thomopoulos. Sensor Integration and Data Fusion. Journal of Robotics Systems, 7(3): 337–372, 1990.

    Google Scholar 

  104. F. Tupin, I. Bloch, and H. Maître. A First Step Towards Automatic Interpretation of SAR Images using Evidential Fusion of Several Structure Detectors. IEEE Transactions on Geoscience and Remote Sensing, 37 (3): 1327–1343, 1999.

    Google Scholar 

  105. F. Tupin, H. Maître, J-F. Mangin, J-M. Nicolas, and E. Pechersky. Linear Feature Detection on SAR Images: Application to the Road Network. Technical report, Ecole Nationale Supérieure des Télécommunications (96D006), May 1996.

    Google Scholar 

  106. J. van Cleynenbreugel, S. A. Osinga, E Fierens, P. Suetens, and A. Oosterlinck. Road Extraction from Multi-temporal Satellite Images by an Evidential Reasoning Approach. Pattern Recognition Letters, 12: 371–380, 1991.

    Google Scholar 

  107. L. Wald. Some Terms of Reference in Data Fusion. IEEE Transactions on Geoscience and Remote Sensing, 37 (3): 1190–1193, 1999.

    Google Scholar 

  108. A. Winter, H. Maître, N. Cambou, and E. Legrand. Object Detection Using a Multiscale Probability Model. In IEEE Int. Conf on Image Processing ICIP’96, volume I, pages 269–272, Lausanne, September 1996.

    Google Scholar 

  109. R. R. Yager. Connectives and Quantifiers in Fuzzy Sets. Fuzzy Sets and Systems, 40: 39–75, 1991.

    MATH  MathSciNet  Google Scholar 

  110. B. Yan. Semiconormed Possibility Integrals and Multi-Feature Pattern Classification. Pattern Recognition, 26 (12): 1855–1862, 1993.

    MATH  Google Scholar 

  111. L. A. Zadeh. Fuzzy Sets. Information and Control, 8: 338–353, 1965.

    MATH  MathSciNet  Google Scholar 

  112. L. A. Zadeh. Fuzzy Sets as a Basis for a Theory of Possibility. Fuzzy Sets and Systems, 1:3–28, 1978.

    Google Scholar 

  113. E. Zahzah. Contribution à la représentation des connaissances et à leur utilisation pour l’interprétation automatique des images satellites. Thèse de doctorat, Université Paul Sabatier, Toulouse, 1992.

    Google Scholar 

  114. R. Zwick, E. Carlstein, and D. V. Budescu. Measures of Similarity Among Fuzzy Concepts: A Comparative Analysis. International Journal of Appmximate Reasoning, 1: 221–242, 1987.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Wien

About this chapter

Cite this chapter

Bloch, I. (2001). Fusion of Image Information under Imprecision and Uncertainty: Numerical Methods. In: Della Riccia, G., Lenz, HJ., Kruse, R. (eds) Data Fusion and Perception. International Centre for Mechanical Sciences, vol 431. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2580-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2580-9_8

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83683-5

  • Online ISBN: 978-3-7091-2580-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics