Skip to main content

Part of the book series: Computational Microelectronics ((COMPUTATIONAL))

Abstract

The general discussion of diffusion in Section 1.3 did not take into account the particular structure of silicon. The intention of this chapter is to discuss the atomistic processes associated with the diffusion of impurities and their interaction with intrinsic point defects in more detail. In Section 3.1, the various mechanisms for diffusion of impurities in silicon are introduced and discussed. Most important for impurities residing predominantly on substitutional sites are mechanisms in which they form mobile pairs with intrinsic point defects. The energetics of such pairs is discussed in detail in Section 3.2. Diffusion of mobile complexes can be described within the method of diffusion-reaction equations. The derivation of the basic equations and of special cases will be explained in Section 3.3. The most important special cases, pair diffusion, diffusion via the Frank-Turnbull mechanism, and diffusion via the kick-out mechanism are discussed in detail in the Sections 3.4 to 3.6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. C. Wert and C. Zener, “Interstitial Atomic Diffusion Coefficients,” Phys. Rev., vol. 76, no. 8, 1169–1175 (1949).

    Article  Google Scholar 

  2. K. Weiser, “Theory of Diffusion and Equilibrium Position of Interstitial Impurities in the Diamond Lattice,” Phys. Rev., vol. 126, no. 4, 1427–1436 (1962).

    Article  Google Scholar 

  3. R. A. Swalin, “Diffusion of Interstitial Impurities in Germanium and Silicon,” J. Phys. Chem. Solids, vol. 23, 154–155 (1962).

    Article  Google Scholar 

  4. H. B. Huntington and F. Seitz, “Mechanism for Self-Diffusion in Metallic Copper,” Phys. Rev., vol. 61, 315–325 (1942).

    Article  Google Scholar 

  5. H. B. Huntington and F. Seitz, “Energy for Diffusion by Direct Interchange,” Phys. Rev., vol. 76, no. 11, 1728 (1949).

    Article  Google Scholar 

  6. C. Zener, “Ring Diffusion in Metals,” Acta Cryst., vol. 3, 346–354 (1950).

    Article  Google Scholar 

  7. M. F. Millea, “The Effect of Heavy Doping on the Diffusion of Impurities in Silicon,” J. Phys. Chem. Solids, vol. 27, 315–325 (1966).

    Article  Google Scholar 

  8. S. M. Hu, “Diffusion in Silicon and Germanium,” in: Atomic Diffusion in Semiconductors, edited by D. Shaw, London: Plenum Press, 217–350 (1973).

    Chapter  Google Scholar 

  9. K. C. Pandey, “Diffusion without Vacancies or Interstitials: A New Concerted Exchange Mechanism,” Phys. Rev. Lett., vol. 57, no. 18, 2287–2290 (1986).

    Article  Google Scholar 

  10. J. Steigman, W. Shockley, and F. C. Nix, “The Self-Diffusion of Copper,” Phys. Rev., vol. 56, 13–21 (1939).

    Article  Google Scholar 

  11. R. P. Johnson, “A Note on the Hole Theory of Diffusion,” Phys. Rev., vol. 56, 814–818 (1939).

    Article  Google Scholar 

  12. S. List and H. Ryssel, “Atomistic Analysis of the Vacancy Mechanism of Impurity Diffusion in Silicon,” J. Appl Phys., vol. 83, no. 12, 7585–7594 (1998).

    Article  Google Scholar 

  13. J. Bardeen, “Diffusion in Binary Alloys,” Phys. Rev., vol. 76, no. 9, 1403–1405 (1949).

    Article  Google Scholar 

  14. A. D. LeClaire and A. B. Lidiard, “Correlation Effects in Diffusion in Crystals,” Phil. Mag., vol. 1, 518–527 (1956).

    Article  MATH  Google Scholar 

  15. J. R. Manning, “Correlation Factors for Impurity Diffusion, bcc, Diamond, and fcc Structures,” Phys. Rev., vol. 136, no. 6A, A1758–A1766 (1964).

    Article  Google Scholar 

  16. S. M. Hu, “Correlation Factor of Impurity Diffusion in Diamond Lattice,” Phys. Rev., vol. 177, no. 3, 1334–1340 (1969).

    Article  Google Scholar 

  17. M. Koiwa and S. Ishioka, “Integral Methods in the Calculation of Correlation Factors for Impurity Diffusion,” Phil. Mag. A, vol. 47, no. 6, 927–938 (1983).

    Article  Google Scholar 

  18. H. Mehrer, “Correlation Factor for the Diffusion of Charged Impurities in the Diamond Structure,” Z. Naturforsch., vol. 26a, 308–316 (1971).

    Google Scholar 

  19. M. Yoshida, “Diffusion of Group V Impurity in Silicon,” Jpn. J. Appl. Phys., vol. 10, no. 6, 702–713 (1971).

    Article  Google Scholar 

  20. S. M. Hu, “On Interaction Potential, Correlation Factor, Vacancy Mobility, and Activation Energy of Impurity Diffusion in Diamond Lattice,” phys. stat. sol (b), vol. 60, 595–603 (1973).

    Article  Google Scholar 

  21. S. T. Dunham and C. D. Wu, “Atomistic Models of Vacancy-Mediated Diffusion in Silicon,” J. Appl Phys., vol. 78, no. 4, 2362–2366 (1995).

    Article  Google Scholar 

  22. F. Seitz, “On the Theory of Diffusion in Metals,” Acta Cryst., vol. 3, 355–363 (1950).

    Article  Google Scholar 

  23. S. M. Hu, “General Theory of Impurity Diffusion in Semiconductors via the Vacancy Mechanism,” Phys. Rev., vol. 180, no. 3, 773–784 (1969).

    Article  Google Scholar 

  24. V A. Uskow and V. V Vas’kin, “Effect of Nonuniform Vacancy Distribution on Diffusion of Impurities in Semiconductors,” Inorganic Materials, vol. 8, no. 10, 1617–1618 (1972).

    Google Scholar 

  25. M. Kurata, Y. Morikawa, K. Nagami, and H. Kuroda, “Remarks on the Vacancy Mechanisms in Ion Implantation,” Jpn. J. Appl. Phys., vol. 12, no. 3, 472–473 (1973).

    Article  Google Scholar 

  26. Y Morikawa, K. Yamamoto, and K. Nagami, “Uphill Diffusion Mechanism in Proton-Irradiated Silicon,” Appl. Phys. Lett, vol. 36, no. 12, 997–999 (1980).

    Article  Google Scholar 

  27. V V Kozlovskii, V N. Lomasov, and N. V Marushchak, “Diffusion of a Substitutional Impurity in a Crystal Irradiated with Ions,” Sov. Phys. Tech. Phys., vol. 30, no. 11, 1283–1285 (1985).

    Google Scholar 

  28. O. V. Aleksandrov, V V Kozlovskii, V. V. Popov, and B. E. Samorukov, “Diffusion of Impurities from Implanted Silicon Layers by Rapid Thermal Annealing,” phys. stat. sol (a), vol. 110, K61–K65 (1988).

    Article  Google Scholar 

  29. K. Maser, “Die Rolle der Überkreuz-Komponenten beim Dotandentransport im Festkörper,” Ex-perimentelle Technik der Physik, vol. 39, no. 2, 169–180 (1991).

    Google Scholar 

  30. S. T. Dunham and C. D. Wu, “Lattice Monte-Carlo Simulations of Vacancy-Mediated Diffusion and Implications for Continuum Models of Coupled Diffusion,” in: Simulation of Semiconductor Devices and Processes, Vol. 6, edited by H. Ryssel and P. Pichler, Vienna: Springer-Verlag, 476–479 (1995).

    Chapter  Google Scholar 

  31. M. M. Bunea and S. T. Dunham, “Lattice Monte Carlo Simulations of Vacancy-Mediated Diffusion and Aggregation Using Ab-initio Parameters,” in: Defects and Diffusion in Silicon Processing, edited by T. Diaz de la Rubia, S. Coffa, P. A. Stolk, and C. S. Rafferty, Mat. Res. Soc. Symp. Proc, vol. 469, 353–358 (1997).

    Google Scholar 

  32. O. Pankratov, H. Huang, T. Diaz de la Rubia, and C. Mailhiot, “As-Vacancy Interaction and Ring Mechanism of Diffusion in Si,” Phys. Rev. B, vol. 56, no. 20, 13172–13176 (1997).

    Article  Google Scholar 

  33. M. M. Bunea and S. T. Dunham, “Monte Carlo Study of Vacancy-Mediated Impurity Diffusion in Silicon,” Phys. Rev. B, vol. 61, no. 4, R2397–R2400 (2000).

    Article  Google Scholar 

  34. J. S. Nelson, P. A. Schultz, and A. F. Wright, “Valence and Atomic Size Dependent Exchange Barriers in Vacancy-Mediated Dopant Diffusion,” Appl. Phys. Lett., vol. 73, no. 2, 247–249 (1998).

    Article  Google Scholar 

  35. P. Baruch, “Radiation Defects and Impurity Diffusion in Silicon,” in: Radiation Effects in Semiconductors, 1976, edited by N. B. Urli and J. W. Corbett, Inst. Phys. Conf Sen, no. 31, 126–143 (1977).

    Google Scholar 

  36. V. V Kozlovskii, V N. Lomasov, G. M. Gur’yanov, and A. P. Kovarskii, “Proton-Stimulated Diffusion of Antimony in Silicon,” Sov. Phys. Semicond., vol. 18, no. 5, 598–599 (1984).

    Google Scholar 

  37. P. Pichler, R. Schork, T. Klauser, and H. Ryssel, “Direct Experimental Evidence for Diffusion of Dopants via Pairs with Intrinsic Point Defects,” Appl. Phys. Lett., vol. 60, no. 8, 953–955 (1992).

    Article  Google Scholar 

  38. M. D. Giles, “Transient Phosphorus Diffusion from Silicon and Argon Implantation Damage,” Appl. Phys. Lett, vol. 62, no. 16, 1940–1942 (1993).

    Article  Google Scholar 

  39. F. C. Frank and D. Turnbull, “Mechanism of Diffusion of Copper in Germanium,” Phys. Rev., vol. 104, no. 3, 617–618 (1956).

    Article  Google Scholar 

  40. R. L. Longini, “Rapid Zinc Diffusion in Gallium Arsenide,” Solid-State Electronics, vol. 5, 127–130 (1962).

    Article  Google Scholar 

  41. A. Seeger and K. P. Chik, “Diffusion Mechanism and Point Defects in Silicon and Germanium,” phys. stat. sol, vol. 29, 455–542 (1968).

    Article  Google Scholar 

  42. G. D. Watkins, “A Review of EPR Studies in Irradiated Silicon,” in: Radiation Damage in Semiconductors, Paris: Dunod, 97–113 (1964).

    Google Scholar 

  43. U. Gösele, W. Frank, and A. Seeger, “Mechanism and Kinetics of the Diffusion of Gold in Silicon,” Appl. Phys., vol. 23, 361–368 (1980).

    Article  Google Scholar 

  44. U. Schmid, J. A. Van Vechten, N. C. Myers, and U. Koch, “Failure of the “Kick-Out” Model for the Diffusion of Au into Si When Tested by Monte-Carlo Simulation,” in: Impurities, Defects and Diffusion in Semiconductors: Bulk and Layered Structures, edited by D. J. Wolford, J. Bernholc, and E. E. Haller, Mat. Res. Soc. Symp. Proc, vol. 163, 609–614 (1990).

    Google Scholar 

  45. D. Mathiot, “Gold, Self-, and Dopant Diffusion in Silicon,” Phys. Rev. B, vol. 45, no. 23, 13345–13355 (1992).

    Article  Google Scholar 

  46. T. K. Monson, J. A. Van Vechten, Q. S. Zhang, and R. K. Graupner, “Comment on “Gold, Self-, and Dopant Diffusion in Silicon”,” Phys. Rev. B, vol. 49, no. 4, 2972–2976 (1994).

    Article  Google Scholar 

  47. S. M. Hu, “Vacancies and Self-Interstitials in Silicon,” in: Defects in Silicon II, edited by W. M. Bullis, U. Gösele, and F. Shimura, Electrochem. Soc. Proc, vol. 91-9, 211–236 (1991).

    Google Scholar 

  48. A. B. Lidiard, “The Influence of Solutes on Self-Diffusion in Metals,” Phil. Mag., vol. 5, no. 59, 1171–1180 (1960).

    Article  Google Scholar 

  49. M. Yoshida, E. Arai, H. Nakamura, and Y. Terunuma, “Excess Vacancy Generation Mechanisms at Phosphorus Diffusion into Silicon,” J. Appl. Phys., vol. 45, no. 4, 1498–1506 (1974).

    Article  Google Scholar 

  50. W. B. Richardson and B. J. Mulvaney, “Nonequilibrium Behaviour of Charged Point Defects during Phosphorus Diffusion in Silicon,” J. Appl. Phys., vol. 65, no. 6, 2243–2247 (1989).

    Article  Google Scholar 

  51. N. E. B. Cowern, “General Model for Intrinsic Dopant Diffusion in Silicon under Nonequilibrium Point-Defect Conditions,” J. Appl. Phys., vol. 64, no. 9, 4484–4490 (1988).

    Article  Google Scholar 

  52. B. P. R. Marioton, U. Gösele, and T. Y Tan, “Are Self-Interstitials Required to Explain Non-Equilibrium Diffusion Phenomena in Silicon?” Chemtronics, vol. 1, 156–160 (1986).

    Google Scholar 

  53. S. Loualiche, C. Lucas, P. Baruch, J. P. Gailliard, and J. C. Pfister, “Theoretical Model for Radiation Enhanced Diffusion and Redistribution of Impurities,” phys. stat. sol. (a), vol. 69, 663–676 (1982).

    Article  Google Scholar 

  54. D. Mathiot and J. C. Pfister, “Dopant Diffusion in Silicon: A Consistent View Involving Nonequilibrium Defects,” J. Appl. Phys., vol. 55, no. 10, 3518–3530 (1984).

    Article  MathSciNet  Google Scholar 

  55. P. Fahey, G. Barbuscia, M. Moslehi, and R. W. Dutton, “Kinetics of Thermal Nitridation Processes in the Study of Dopant Diffusion Mechanisms in Silicon,” Appl. Phys. Lett., vol. 46, no. 8, 784–786 (1985).

    Article  Google Scholar 

  56. Z. M. Ling, Silicon Oxidation: Modelling, Characterization and Strategic Considerations, Ph.D. thesis, Katholieke Universiteit Leuven (1989).

    Google Scholar 

  57. S. T. Dunham and J. D. Plummer, “Point-Defect Generation during Oxidation of Silicon in Dry Oxygen. II. Comparison to Experiment,” J. Appl. Phys., vol. 59, no. 7, 2551–2561 (1986).

    Article  Google Scholar 

  58. R. Falster and V. V Voronkov, “Intrinsic Point Defects and Their Control in Silicon Crystal Growth and Wafer Processing,” MRS Bulletin, vol. 25, no. 6, 28–32 (2000).

    Article  Google Scholar 

  59. B. Falster, Private communication (2003).

    Google Scholar 

  60. W. Lerch, M. Glück, N. A. Stolwijk, H. Walk, M. Schäfer, S. D. Marcus, D. F. Downey, and J. W. Chow, “Boron Ultrashallow Junction Formation in Silicon by Low-Energy Implantation and Rapid Thermal Annealing in Inert and Oxidizing Ambient,” J. Electrochem. Soc, vol. 146, no. 7, 2670–2678 (1999).

    Article  Google Scholar 

  61. U. Gösele and T. Y. Tan, “The Nature of Point Defects and Their Influence on Diffusion Processes in Silicon at High Temperatures,” in: Defects in Semiconductors II, edited by S. Mahajan and J. W. Corbett, Mat. Res. Soc. Symp. Proc, vol. 14, 45–59 (1983).

    Google Scholar 

  62. H.-J. Gossmann, T. E. Haynes, P. A. Stolk, D. C. Jacobson, G. H. Gilmer, J. M. Poate, H. S. Luftman, T. K. Mogi, and M. O. Thompson, “The Interstitial Fraction of Diffusivity of Common Dopants in Si,” Appl. Phys. Lett., vol. 71, no. 26, 3862–3864 (1997).

    Article  Google Scholar 

  63. A. Ural, P. B. Griffin, and J. D. Plummer, “Fractional Contributions of Microscopic Diffusion Mechanisms for Common Dopants and Self-Diffusion in Silicon,” J. Appl. Phys., vol. 85, no. 9, 6440–6446 (1999).

    Article  Google Scholar 

  64. E. Vandenbossche and B. Baccus, “Interactions between Dopants and Point Defects during Ni-tridation Processes,” J. Appl. Phys., vol. 72, no. 2, 447–53 (1992).

    Article  Google Scholar 

  65. M. Heinrich, M. Budil, and H. W. Pötzl, “Determination of Diffusion Parameters for Arsenic,” in: Impurities, Defects and Diffusion in Semiconductors: Bulk and Layered Structures, edited by D. J. Wolford, J. Bernholc, and E. E. Haller, Mat. Res. Soc. Symp. Proc, vol. 163, 535–541 (1990).

    Google Scholar 

  66. P. Novell and M. E. Law, “The Effect of Nondilute Dopant-Defect Pair Concentrations on Arsenic Diffusion,” in: Proceedings NUPADIV, New York: IEEE, 41–44 (1992).

    Google Scholar 

  67. F. M. Smits, “Formation of Junction Structures by Solid-State Diffusion,” Proc. IRE, vol. 46, 1049–1061 (1958).

    Article  Google Scholar 

  68. K. Lehovec and A. Slobodskoy, “Diffusion of Charged Particles into a Semiconductor under Consideration of the Built-in Field,” Solid-State Electronics, vol. 3, 45–50 (1961).

    Article  Google Scholar 

  69. J. Bardeen, W. H. Brattain, and W. Shockley, “Investigation of Oxidation of Copper by Use of Radioactive Cu Tracers,” J. Chem. Phys., vol. 14, no. 12, 714–721 (1946).

    Article  Google Scholar 

  70. W. Shockley, “Field-Enhanced Donor Diffusion in Degenerate Semiconductor Layers,” J. Appl. Phys., vol. 32, no. 7, 1402–1403 (1961).

    Article  Google Scholar 

  71. N. D. Thai, “Concentration-Dependent Diffusion of Boron and Phosphorus in Silicon,” J. Appl. Phys., vol. 41, no. 7, 2859–2866 (1970).

    Article  Google Scholar 

  72. D. Shaw, “General Features of Diffusion in Semiconductors,” in: Atomic Diffusion in Semiconductors, edited by D. Shaw, London: Plenum Press, 1–63 (1973).

    Chapter  Google Scholar 

  73. S. M. Hu, “Modeling Diffusion in Silicon: Accomplishments and Challenges,” in: VLSI Science and Technology/1985, edited by W. M. Bullis and S. Broydo, Electrochem. Soc. Proc, vol. 85-5, 465–506 (1985).

    Google Scholar 

  74. C. L. Jones and A. F. W. Willoughby, “The Complete Base Profile Shape in a Push-Out Diffused Transistor Analyzed by Radiotracer Methods,” Appl. Phys. Lett., vol. 25, no. 2, 114–116 (1974).

    Article  Google Scholar 

  75. L. Boltzmann, “Zur Integration der Diffusionsgleichung bei variabeln Diffusionscoefficienten,” Annalen der Physik und Chemie, vol. 53, 959–964 (1894).

    Google Scholar 

  76. C. Matano, “On the Relation between the Diffusion-Coefficients and Concentrations of Solid Metals (The Nickel-Copper System)” Jpn. J. Phys., vol. 8, no. 3, 109–113 (1933).

    Google Scholar 

  77. R. B. Fair and J. C. C. Tsai, “A Quantitative Model for the Diffusion of Phosphorus in Silicon and the Emitter Dip Effect,” J. Electrochem. Soc, vol. 124, no. 7, 1107–1117 (1977).

    Article  Google Scholar 

  78. S. M. Hu, P. Fahey, and R. W. Dutton, “On Models of Phosphorus Diffusion in Silicon,” J. Appl. Phys., vol. 54, no. 12, 6912–6922 (1983).

    Article  Google Scholar 

  79. W. A. OrrArienzo, R. Glang, R. F. Lever, R. K. Lewis, and F. F. Morehead, “Boron Diffusion in Silicon at High Concentrations,” J. Appl. Phys., vol. 63, no. 1, 116–120 (1988).

    Article  Google Scholar 

  80. I. D. Sharp, H. A. Bracht, H. H. Silvestri, S. P. Nicois, J. W. Beeman, J. L. Hansen, A. Nylandsted Larsen, and E. E. Haller, “Self-and Dopant Diffusion in Extrinsic Boron Doped Isotopically Controlled Silicon Multilayer Structures,” in: Defect and Impurity Engineered Semiconductors and Devices III, edited by S. Ashok, J. Chevallier, N. M. Johnson, B. L. Sopori, and H. Okushi, Mat. Res. Soc Symp. Proc, vol. 719, F13.11.1–F13.11.6 (2002).

    Google Scholar 

  81. H. F. Schaake, “The Diffusion of Phosphorus in Silicon from High Surface Concentrations,” J. Appl. Phys., vol. 55, no. 4, 1208–1211 (1984).

    Google Scholar 

  82. D. Mathiot and J. C. Pfister, “Evidences That P Diffusion in Si Is Assisted Mainly by Vacancies,” Appl. Phys. Lett, vol. 47, no. 9, 962–964 (1985).

    Article  Google Scholar 

  83. F. F. Morehead and R. F. Lever, “The Steady-State Model for Coupled Defect-Impurity Diffusion in Silicon,” J. Appl. Phys., vol. 66, no. 11, 5349–5352 (1989).

    Article  Google Scholar 

  84. R. Dürr and P. Pichler, “A Consistent Pair-Diffusion Based Steady-State Model for Phosphorus Diffusion,” in: ESSDERC’89, edited by A. Heuberger, H. Ryssel, and P. Lange, Berlin: Springer-Verlag, 297–301(1989).

    Google Scholar 

  85. M. D. Sturge, “A Note on the Theory of Diffusion of Copper in Germanium,” Proc. Phys. Soc. (London), vol. 73, no. 2, 297–306 (1959).

    Article  Google Scholar 

  86. W. R. Wilcox and T. J. La Chapelle, “Mechanisms of Gold Diffusion into Silicon,” J. Appl. Phys., vol. 35, no. 1, 240–246 (1964).

    Article  Google Scholar 

  87. F. A. Huntley and A. F. W. Willoughby, “The Diffusion of Gold in Thin Silicon Slices,” Solid-State Electronics, vol. 13, 1231–1240 (1970).

    Article  Google Scholar 

  88. M. Jacob, P. Pichler, H. Ryssel, and R. Falster, “Determination of Vacancy Concentrations in the Bulk of Silicon Wafers by Platinum Diffusion Experiments,” J. Appl. Phys., vol. 82, no. 1, 182–191 (1997).

    Article  Google Scholar 

  89. H. Zimmermann and H. Ryssel, “Direct Determination of Point-Defect Equilibrium Concentrations,” Phys. Rev. B, vol. 44, no. 16, 9064–9067 (1991).

    Article  Google Scholar 

  90. H. Zimmermann, “Vacancy Distributions in Silicon and Methods for Their Accurate Determination,” in: Diffusion in Silicon, edited by D. J. Fisher, Defect and Diffusion Forum, vol. 153-155, 111–136 (1998).

    Google Scholar 

  91. V. C. Venezia, D. J. Eaglesham, T. E. Haynes, A. Agarwal, D. C. Jacobson, H.-J. Gossmann, and F. H. Baumann, “Depth Profiling of Vacancy Clusters in MeV-Implanted Si Using Au Labeling,” Appl. Phys. Lett., vol. 73, no. 20, 2980–2982 (1998).

    Article  Google Scholar 

  92. F. Morehead, N. A. Stolwijk, W. Meyberg, and U. Gösele, “Self-Interstitial and Vacancy Contribution to Silicon Self-Diffusion Determined from the Diffusion of Gold in Silicon,” Appl. Phys. Lett., vol. 42, no. 8, 690–692 (1983).

    Article  Google Scholar 

  93. H. Kitagawa and M. Yoshida, “On the Distinction between the Dissociative and Kick-Out Mechanisms for Site Exchange in Silicon,” Jpn. J. Appl. Phys., Part 1, vol. 31, no. 9A, 2859–2963 (1992).

    Google Scholar 

  94. H. Zimmermann and H. Ryssel, “Gold and Platinum Diffusion: The Key to the Understanding of Intrinsic Point Defect Behavior in Silicon,” Appl. Phys. A, vol. 55, 121–134 (1992).

    Article  Google Scholar 

  95. B. Pichaud, G. Mariani, W. J. Taylor, and W.-S. Yang, “Dislocation-Gold Interactions in FZ and CZ Silicon: The Role of Self-Interstitials,” in: Dislocations’ 93, edited by J. Rabier, A. George, Y. Bréchet, and L. Kubin, Solid State Phenomena, vol. 35-36, 491–496 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Wien

About this chapter

Cite this chapter

Pichler, P. (2004). Impurity Diffusion in Silicon. In: Intrinsic Point Defects, Impurities, and Their Diffusion in Silicon. Computational Microelectronics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0597-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0597-9_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7204-9

  • Online ISBN: 978-3-7091-0597-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics