Skip to main content

Balancierende Selektion

  • Chapter
  • First Online:
Molekulare Populationsgenetik

Zusammenfassung

Eine Form der Selektion, nämlich die balancierende Selektion, kann die Erhaltung adaptiver Varianten eines Merkmals fördern und somit zum Erhalt von Diversität am selektierten Locus führen. Dabei können verschiedene vorteilhafte Varianten über lange Zeiträume hinweg erhalten werden und sogar über Artbildungsprozesse hinaus bestehen. Diese stabilen Polymorphismen können durch verschiedene Formen der balancierenden Selektion ausgeprägt werden, die wir in diesem Kapitel besprechen wollen. Ähnlich wie die positiv gerichtete Selektion, kann balancierende Selektion hitchhiking-Effekte auf benachbarte Regionen des Genoms ausüben. Im Gegenteil zum selective sweep führt dies jedoch zur Erhöhung der Diversität in diesen Regionen. Diese und andere Auswirkungen der balancierenden Selektion kann man sich zu Nutze machen, um das Wirken dieser Form von Selektion in Genomen nachzuweisen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Bitarello BD, de Filippo C, Teixeira JC, Schmidt JM, Kleinert P et al (2018) Signatures of long-term balancing selection in human genomes. Genome Biol Evol 10:939–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JKM, Tellier A (2011) Plant-parasite coevolution: bridging the gap between genetics and ecology. Annu Rev Phytopathol 49:345–367

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth D (2006) Balancing selection and its effects on sequences in nearby genome regions. PLoS Genet 2:e64

    Article  PubMed  PubMed Central  Google Scholar 

  • Charlesworth B, Charlesworth D (2012) Elements of evolutionary genetics, 2. Aufl. Roberts and Company, Greenwood Village

    Google Scholar 

  • Charlesworth D, Charlesworth B (1975) Theoretical genetics of Batesian mimicry I. Single-locus models. J Theor Biol 55:283–303

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth B, Nordborg M, Charlesworth D (1997) The effects of local selection, balanced polymorphism and background selection on equilibrium patterns of genetic diversity in subdivided populations. Genet Res Camb 70:155–174

    Article  CAS  Google Scholar 

  • Clarke B (1962) Natural selection in mixed populations of two polymorphic snails. Heredity 17:319–345

    Article  Google Scholar 

  • Clarke BC (1979) Evolution of genetic diversity. Proc R Soc B-Biol Sci 205:453–474

    Article  CAS  Google Scholar 

  • Dawkins R, Krebs JR (1979) Arms races between and within species. Proc R Soc B-Biol Sci 205:489–511

    Article  CAS  Google Scholar 

  • Débarre F, Lenormand T, Gandon S (2009) Evolutionary epidemiology of drug-resistance in space. PLoS Comput Biol 5:e1000337

    Article  PubMed  PubMed Central  Google Scholar 

  • Depaulis F, Veuille M (1998) Neutrality tests based on the distribution of haplotypes under an infinite-site model. Mol Biol Evol 15:1788–1790

    Article  CAS  PubMed  Google Scholar 

  • Depaulis F, Mousset S, Veuille M (2001) Haplotype tests using coalescent simulations conditional on the number of segregating sites. Mol Biol Evol 18:1136–1138

    Article  CAS  PubMed  Google Scholar 

  • Ewens WJ, Thomson G (1970) Heterozygote selective advantage. Ann Hum Genet 33:365–376

    Article  Google Scholar 

  • Felsenstein J (1976) Theoretical population genetics of variable selection and migration. Annu Rev Genet 10:253–280

    Article  CAS  PubMed  Google Scholar 

  • Fijarczyk A, Babik W (2015) Detecting balancing selection in genomes: limits and prospects. Mol Ecol 24:3529–3545

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick MJ, Feder E, Rowe L, Sokolowski MB (2007) Maintaining a behaviour polymorphism by frequency-dependent selection on a single gene. Nature 447:210–212

    Article  CAS  PubMed  Google Scholar 

  • Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fumagalli M, Cagliani R, Pozzoli U, Riva S, Comi GP et al (2009) Widespread balancing selection and pathogen-driven selection at blood group antigen genes. Genome Res 19:199–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrigan D, Hedrick PW (2003) Perspective: detecting adaptive molecular polymorphism: lessons from the MHC. Evolution 57:1707–1722

    Article  CAS  PubMed  Google Scholar 

  • Gigord LDB, Macnair MR, Smithson A (2001) Negative frequency-dependent selection maintains a dramatic flower color polymorphism in the rewardless orchid Dactylorhiza sambucina (L.) Soò. Proc Natl Acad Sci USA 98:6253–6255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gloag R, Ding G, Christie JR, Buchmann G, Beekman M et al (2016) An invasive social insect overcomes genetic load at the sex locus. Nat Ecol Evol 1:11

    Article  PubMed  Google Scholar 

  • Haldane JBS (1924) A mathematical theory of natural and artificial selection. Part I. Trans Camb Phil Soc 23:19–41

    Google Scholar 

  • Haldane JBS, Jayakar SD (1963) Polymorphism due to selection depending on composition of a population. J Genet 58:318–323

    Article  Google Scholar 

  • Hedrick PW (2012) What is the evidence for heterozygote advantage selection? Trends Ecol Evol 27:698–704

    Article  PubMed  Google Scholar 

  • Hörger AC, Ilyas M, Stephan W, Tellier A, van der Hoorn RAL et al (2012) Balancing selection at the tomato RCR3 guardee gene family maintains variation in strength of pathogen defense. PLoS Genet 8:e1002813

    Article  PubMed  PubMed Central  Google Scholar 

  • Hori M (1993) Frequency-dependent natural selection in the handedness of scale-eating cichlid fish. Science 260:216–219

    Article  CAS  PubMed  Google Scholar 

  • Hudson RR, Kaplan NL (1988) The coalescent process in models with selection and recombination. Genetics 120:831–840

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson RR, Kreitman M, Aguadé M (1987) A test of neutral molecular evolution based on nucleotide data. Genetics 116:153–159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Innan H, Nordborg M (2003) The extent of linkage disequilibrium and haplotype sharing around a polymorphic site. Genetics 165:437–444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston SE, Gratten J, Berenos C, Pilkington JG, Clutton-Brock TH et al (2013) Life history trade-offs at a single locus maintain sexually selected genetic variation. Nature 502:93–95

    Article  CAS  PubMed  Google Scholar 

  • Joron M, Mallet JLB (1998) Diversity in mimicry: paradox or paradigm? Trends Ecol Evol 13:461–466

    Article  CAS  PubMed  Google Scholar 

  • Kamau E, Charlesworth B, Charlesworth D (2007) Linkage disequilibrium and recombination rate estimates in the self-incompatibility region of Arabidopsis lyrata. Genetics 176:2357–2369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kellenberger RT, Byers KJRP, De Brito Francisco RM, Staedler YM, LaFountain AM et al (2019) Emergence of a floral colour polymorphism by pollinator-mediated overdominance. Nat Commun 10:63

    Article  PubMed  PubMed Central  Google Scholar 

  • Leale AM, Kassen R (2018) The emergence, maintenance, and demise of diversity in a spatially variable antibiotic regime. Evol Lett 2:134–143

    Article  PubMed  PubMed Central  Google Scholar 

  • Levene H (1953) Genetic equilibrium when more than one ecological niche is available. Am Nat 87:331–333

    Article  Google Scholar 

  • Llaurens V, Billiard S, Leducq JB, Castric V, Klein EK et al (2008) Does frequency-dependent selection with complex dominance interactions accurately predict allelic frequencies at the self-incompatibility locus in Arabidopsis halleri? Evolution 62:2545–2557

    Article  CAS  PubMed  Google Scholar 

  • Llaurens V, Whibley A, Joron M (2017) Genetic architecture and balancing selection: the life and death of differentiated variants. Mol Ecol 26:2430–2448

    Article  PubMed  Google Scholar 

  • May RM, Anderson RM (1983) Epidemiology and genetics in the coevolution of parasites and hosts. Proc R Soc Lond B 219:281–313

    Article  CAS  PubMed  Google Scholar 

  • Maynard Smith J (1966) Sympatric speciation. Am Nat 100:637–650

    Article  Google Scholar 

  • McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654

    Article  CAS  PubMed  Google Scholar 

  • Nagylaki T (1975) Polymorphisms in cyclically-varying environments. Heredity 35:67–74

    Article  CAS  PubMed  Google Scholar 

  • Nei M, Li W-H (1973) Linkage disequilibrium in subdivided populations. Genetics 75:213–219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nei M, Roychoudhury AK (1973) Probability of fixation and mean fixation time of an overdominant mutation. Genetics 74:371–380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nosil P, Egan SP, Funk DJ (2008) Heterogeneous genomic differentiation between walking-stick ecotypes: „isolation by adaptation“ and multiple roles for divergent selection. Evolution 62:316–336

    Article  PubMed  Google Scholar 

  • Piertney SB, Oliver MK (2006) The evolutionary ecology of the major histocompatibility complex. Heredity 96:7–21

    Article  CAS  PubMed  Google Scholar 

  • Polley SD, Conway DJ (2001) Strong diversifying selection on domains of the Plasmodium falciparum apical membrane antigen 1 gene. Genetics 158:1505–1512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prout T (1968) Sufficient conditions for multiple niche polymorphism. Am Nat 102:493–496

    Article  Google Scholar 

  • Richards PM, Liu MM, Lowe N, Davey JW, Blaxter ML et al (2013) RAD-Seq derived markers flank the shell colour and banding loci of the Cepaea nemoralis supergene. Mol Ecol 22:3077–3089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richman AD, Uyenoyama MK, Kohn JR (1996) Allelic diversity and gene genealogy at the self-incompatibility locus in the Solanaceae. Science 273:1212–1216

    Article  CAS  PubMed  Google Scholar 

  • Savage AE, Zamudio KR (2011) MHC genotypes associate with resistance to a frog-killing fungus. Proc Natl Acad Sci USA 108:16705–16710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schemske DW, Bierzychudek P (2001) Perspective: evolution of flower color in the desert annual Linanthus parryae: Wright revisited. Evolution 55:1269–1282

    Article  CAS  PubMed  Google Scholar 

  • Schwander T, Libbrecht R, Keller L (2014) Supergenes and complex phenotypes. Curr Biol 24:R288–R294

    Article  CAS  PubMed  Google Scholar 

  • Shiina T, Ota M, Shimizu S, Katsuyama Y, Hashimoto N et al (2006) Rapid evolution of major histocompatibility complex class I genes in primates generates new disease alleles in humans via hitchhiking diversity. Genetics 173:1555–1570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shuster SM, Wade MJ (1991) Equal mating success among male reproductive strategies in a marine isopod. Nature 350:608–610

    Article  Google Scholar 

  • Stahl EA, Dwyer G, Mauricio R, Kreitman M, Bergelson J (1999) Dynamics of disease resistance polymorphism at the Rpm1 locus of Arabidopsis. Nature 400:667–671

    Article  CAS  PubMed  Google Scholar 

  • Sutton JT, Nakagawa S, Robertson BC, Jamieson IG (2011) Disentangling the roles of natural selection and genetic drift in shaping variation at MHC immunity genes. Mol Ecol 20:4408–4420

    Article  PubMed  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takahata N, Nei M (1990) Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics 124:967–978

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tellier A, Moreno-Gamez S, Stephan W (2014) Speed of adaptation and genomic footprints of host-parasite coevolution under arms race and trench warfare dynamics. Evolution 68:2211–2224

    PubMed  Google Scholar 

  • Thorneycroft HB (1975) A cytogenetic study of the white-throated sparrow, Zonotrichia albicollis (Gmelin). Evolution 29:611–621

    Article  PubMed  Google Scholar 

  • Turelli M, Schemske DW, Bierzychudek P (2001) Stable two-allele polymorphisms maintained by fluctuating fitnesses and seed banks: protecting the blues in Linanthus parryae. Evolution 55:1283–1298

    Article  CAS  PubMed  Google Scholar 

  • Turner JRG (1987) The evolutionary dynamics of Batesian and Muellerian mimicry: similarities and differences. Ecol Entomol 12:81–95

    Article  Google Scholar 

  • Uyenoyama MK (1997) Genealogical structure among alleles regulating self-incompatibility in natural populations of flowering plants. Genetics 147:1389–1400

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Diepen LT, Olson A, Ihrmark K, Stenlid J, James TY (2013) Extensive trans-specific polymorphism at the mating type locus of the root decay fungus Heterobasidion. Mol Biol Evol 30:2286–2301

    Article  PubMed  Google Scholar 

  • Vekemans X, Slatkin M (1994) Gene and allelic genealogies at a gametophytic self-incompatibility locus. Genetics 137:1157–1165

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vekemans X, Schierup MH, Christiansen FB (1998) Mate availability and fecundity selection in multi-allelic self-incompatibility systems in plants. Evolution 52:19–29

    PubMed  Google Scholar 

  • Wall JD (1999) Recombination and the power of statistical tests of neutrality. Genet Res 74:65–79

    Article  Google Scholar 

  • Watterson GA (1978) An analysis of multi-allelic data. Genetics 88:171–179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weedall GD, Conway DJ (2010) Detecting signatures of balancing selection to identify targets of anti-parasite immunity. Trends Parasitol 26:363–369

    Article  CAS  PubMed  Google Scholar 

  • Wilson DS, Turelli M (1986) Stable underdominance and the evolutionary invasion of empty niches. Am Nat 127:835–850

    Article  Google Scholar 

  • Wright S (1939) The distribution of self-sterility alleles in populations. Genetics 24:538–552

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Stephan .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stephan, W., Hörger, A.C. (2019). Balancierende Selektion. In: Molekulare Populationsgenetik. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59428-5_9

Download citation

Publish with us

Policies and ethics