Skip to main content

Die Atempumpe und ihre Störungen

  • Chapter
  • First Online:
Neurologische Beatmungsmedizin
  • 3517 Accesses

Zusammenfassung

Die Atempumpe generiert den inspiratorischen und exspiratorischen Luftfluss durch Veränderungen des intrathorakalen Drucks in Zusammenspiel mit der Weite der oberen Atemwege. Ihre Bestandteile sind der Thorax, die thorakale Muskulatur, das Zwerchfell, die abdominelle Muskulatur, die Atemhilfsmuskulatur und die Muskulatur der oberen Atemwege. Durch Erkrankungen der Thoraxwand, neuromuskuläre Erkrankungen und Erkrankungen, welche die Atempumpe indirekt beeinträchtigen, wird die Ventilation gestört und es kommt zum ventilatorischen Versagen mit Anstieg des paCO2. Dieser ist im Schlaf und insbesondere im REM-Schlaf am ausgeprägtesten. Bei der Diagnostik von Störungen der Atempumpe spielen Spirometrie, Bodyplethysmographie und die bildgebende Darstellung des Zwerchfells eine wichtige Rolle. Die korrekte Diagnostik von Störungen der Atempumpe ist bedeutsam, da – bei ätiologisch nicht zu behebender ventilatorischer Insuffizienz – die Beatmungstherapie zum Einsatz kommt, wodurch bei vielen Erkrankungen der Atempumpe die Überlebenszeit, aber auch die Lebensqualität erheblich gesteigert werden können.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literatur

  • Abouassaly CT et al (2010) Postoperative neuromuscular blocker use is associated with higher primary fascial closure rates after damage control laparotomy. J Trauma Acute Care Surg 69(3):557–561

    Article  CAS  Google Scholar 

  • Allen SM et al (1985) Fall in vital capacity with posture. Br J Dis chest 79:267–271

    Article  CAS  PubMed  Google Scholar 

  • Aumüller G et al (2014) Duale Reihe Anatomie. Thieme, Stuttgart

    Google Scholar 

  • Bach JR (2017) Noninvasive respiratory management of patients with neuromuscular disease. Ann Rehabil Med 41(4):519

    Article  PubMed  PubMed Central  Google Scholar 

  • Bach JR, Gonçalves MR (2006) Pulmonary rehabilitation in neuromuscular disorders and spinal cord injury. Rev Port de Pneumologia 12(1):S27–S44

    Article  Google Scholar 

  • Bach JR et al (2004) Oximetry and indications for tracheotomy for amyotrophic lateral sclerosis*. Chest 126(5):1502–1507

    Article  PubMed  Google Scholar 

  • Bach JR et al (2008) Lung insufflation capacity in neuromuscular disease. Am J Phys Med Rehabil 87(9):720–725

    Article  PubMed  Google Scholar 

  • Barreiro E et al (2015) Guidelines for the evaluation and treatment of muscle dysfunction in patients with chronic obstructive pulmonary disease. Arch Bronconeumol (English Edition) 51(8):384–395

    Article  Google Scholar 

  • Barrios C et al (2008) Successful management of occult pneumothorax without tube thoracostomy despite positive pressure ventilation. Am Surg 74(10):958–961

    PubMed  Google Scholar 

  • Barwing J et al (2013) Electrical activity of the diaphragm (EAdi) as a monitoring parameter in difficult weaning from respirator: a pilot study. Crit Care 17(4):R182

    Article  PubMed  PubMed Central  Google Scholar 

  • Bjorck M, Wanhainen A (2014) Management of abdominal compartment syndrome and the open abdomen. Eur J Vasc Endovasc Surg 47(3):279–287

    Article  CAS  PubMed  Google Scholar 

  • Boentert M, Young P (2016) Schlaf und Atmung bei neuromuskulären Erkrankungen. Klin Neurophysiol 47(03):151–162

    Article  Google Scholar 

  • Boentert M et al (2018) Prevalence of sleep apnoea and capnographic detection of nocturnal hypoventilation in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 89(4):418–424

    Article  PubMed  Google Scholar 

  • Boon AJ et al (2013) Two-dimensional ultrasound imaging of the diaphragm: quantitative values in normal subjects. Muscle Nerve 47(6):884–889

    Article  PubMed  Google Scholar 

  • Bourke SC et al (2006) Effects of non-invasive ventilation on survival and quality of life in patients with amyotrophic lateral sclerosis: a randomised controlled trial. Lancet Neurol 5(2):140–147

    Article  PubMed  Google Scholar 

  • Budweiser S et al (2006) Impact of ventilation parameters and duration of ventilator use on non-invasive home ventilation in restrictive thoracic disorders. Respiration 73(4):488–494

    Article  PubMed  Google Scholar 

  • Buyse B et al (2003) Treatment of chronic respiratory failure in kyphoscoliosis: oxygen or ventilation? Eur Respir J 22(3):525–528

    Article  CAS  PubMed  Google Scholar 

  • Caro CG, Dubois AB (1961) Pulmonary function in kyphoscoliosis. Thorax 16(3):282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Celik S et al (2010) Long-term results of diaphragmatic plication in adults with unilateral diaphragm paralysis. J cardiothorac surg 5(1):111

    Article  PubMed  PubMed Central  Google Scholar 

  • Chatwin M et al (2017) Airway clearance techniques in neuromuscular disorders: a state of the art review. Respir Med 136:98–110

    Article  Google Scholar 

  • Chhajed PN (2016) Utility of transcutaneous capnography for optimization of non-invasive ventilation pressures. J Clin Diagn Res: JCDR 10(9):OC06

    CAS  PubMed  Google Scholar 

  • Chouri-Pontarollo N et al (2007) Impaired objective daytime vigilance in obesity-hypoventilation syndrome: impact of noninvasive ventilation. Chest 131(1):148–155

    Article  PubMed  Google Scholar 

  • Davis JN (1967) Phrenic nerve conduction in man. J Neurol Neurosurg Psychiatry 30(5):420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Bruin PF et al (1997) Diaphragm thickness and inspiratory strength in patients with Duchenne muscular dystrophy. Thorax 52(5):472–475

    Article  PubMed  PubMed Central  Google Scholar 

  • De Troyer A (1997) Effect of hyperinflation on the diaphragm. Eur Respir J 10(3):708–713

    PubMed  Google Scholar 

  • De Troyer A (2011) The action of the canine diaphragm on the lower ribs depends on activation. J Appl Physiol 111(5):1266–1271

    Article  PubMed  Google Scholar 

  • De Troyer A, Wilson TA (2016) Action of the diaphragm on the rib cage. J Appl Physiol 121(2):391–400

    Article  PubMed  Google Scholar 

  • Dos Santos Yamaguti WP et al (2008) Air trapping: the major factor limiting diaphragm mobility in chronic obstructive pulmonary disease patients. Respirology 13(1):138–144

    Article  PubMed  Google Scholar 

  • Engdahl O et al (1993) Chest radiograph–a poor method for determining the size of a pneumothorax. Chest 103(1):26–29

    Article  CAS  PubMed  Google Scholar 

  • Estenne M, De Troyer A (1985) Relationship between respiratory muscle electromyogram and rib cage motion in tetraplegia. Am Rev Respir Dis 132(1):53–59

    CAS  PubMed  Google Scholar 

  • Fayssoil A et al (2018) Diaphragm: pathophysiology and ultrasound imaging in neuromuscular disorders. J neuromuscul Dis 5(1):1–10

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferreira JC et al (2017) Neurally Adjusted Ventilatory Assist (NAVA) or Pressure Support Ventilation (PSV) during spontaneous breathing trials in critically ill patients: a crossover trial. BMC Pulm Med 17(1):139

    Article  PubMed  PubMed Central  Google Scholar 

  • Fromageot C et al (2001) Supine fall in lung volumes in the assessment of diaphragmatic weakness in neuromuscular disorders. Arch Phys Med Rehabil 82(1):123–128

    Article  CAS  PubMed  Google Scholar 

  • Gazala S et al (2012) Diaphragmatic plication offers functional improvement in dyspnoea and better pulmonary function with low morbidity. Interact CardioVasc Thorac Surg 15(3):505–508

    Article  PubMed  PubMed Central  Google Scholar 

  • Greenburg DL et al (2009) Effects of surgical weight loss on measures of obstructive sleep apnea: a meta-analysis. Am J Med 122(6):535–542

    Article  PubMed  Google Scholar 

  • Gregg I, Nunn AJ (1973) Peak expiratory flow in normal subjects. Br Med J 3(5874):282–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedenstierna G, Larsson A (2012) Influence of abdominal pressure on respiratory and abdominal organ function. Curr Opin Crit Care 18(1):80–85

    Article  PubMed  Google Scholar 

  • Hsu CW, Sun SF (2014) Iatrogenic pneumothorax related to mechanical ventilation. World J Crit Care Med 3(1):8

    Article  PubMed  PubMed Central  Google Scholar 

  • Huttl TP et al (2004) Laparoscopic diaphragmatic plication: long-term results of a novel surgical technique for postoperative phrenic nerve palsy. Surg Endosc Other Interv Tech 18(3):547–551

    Article  CAS  Google Scholar 

  • Huttmann SE et al (2014) Techniques for the Measurement and Monitoring of Carbon Dioxide in the Blood. Ann Am Thorac Soc 11(4):645–652

    Article  CAS  PubMed  Google Scholar 

  • Jenkins JA et al (2016) Phrenic nerve conduction studies as a biomarker of respiratory insufficiency in amyotrophic lateral sclerosis. Amyotrophic Lateral Scler Frontotemporal Degeneration 17(3–4):213–220

    Article  CAS  Google Scholar 

  • Jeong JH, Yoo WG (2015) Effects of air stacking on pulmonary function and peak cough flow in patients with cervical spinal cord injury. J Phys Ther Sci 27(6):1951–1952

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson G (1996) Traumatic pneumothorax: is a chest drain always necessary? Emerg Med J 13(3):173–174

    Article  CAS  Google Scholar 

  • Kabitz HJ et al (2014) Messung der Atemmuskelfunktion. Pneumologie 68(05):307–314

    Article  PubMed  Google Scholar 

  • Kang SW, Bach JR (2000a) Maximum insufflation capacity. Chest 118(1):61–65

    Article  CAS  PubMed  Google Scholar 

  • Kang SW, Bach JR (2000b) Maximum insufflation capacity: vital capacity and cough flows in neuromuscular disease. Am J Phys Med Rehabil 79(3):222–227

    Article  CAS  PubMed  Google Scholar 

  • Kantarci F et al (2004) Normal diaphragmatic motion and the effects of body composition: determination with M-mode sonography. J Ultrasound Med 23(2):255–260

    Article  PubMed  Google Scholar 

  • Kartal M et al (2011) The value of ETCO2 measurement for COPD patients in the emergency department. Eur J Emerg Med 18(1):9–12

    Article  PubMed  Google Scholar 

  • Kirkpatrick AW et al (2010) Clinical review: Intra-abdominal hypertension: does it influence the physiology of prone ventilation? Crit Care 14(4):232

    Article  PubMed  PubMed Central  Google Scholar 

  • Kokatnur L, Rudrappa M (2018) Diaphragmatic Palsy. Diseases 6(1):16

    Article  PubMed Central  Google Scholar 

  • Koo P et al (2017) The maximal expiratory-to-inspiratory pressure ratio and supine vital capacity as screening tests for diaphragm dysfunction. Lung 195(1):29–35

    Article  PubMed  Google Scholar 

  • Kwon S et al (2015) Usefulness of phrenic latency and forced vital capacity in patients with ALS with latent respiratory dysfunction. Clin Neurophysiol 126(7):1421–1426

    Article  PubMed  Google Scholar 

  • Larsen R, Ziegenfuß T (2013) Beatmung. Springer, Berlin

    Book  Google Scholar 

  • Lattuada M, Hedenstierna G (2006) Abdominal lymph flow in an endotoxin sepsis model: influence of spontaneous breathing and mechanical ventilation. Crit Care Med 34(11):2792–2798

    Article  PubMed  Google Scholar 

  • Lechtzin N et al (2006) Supramaximal inflation improves lung compliance in subjects with amyotrophic lateral sclerosis. Chest 129(5):1322–1329

    Article  PubMed  Google Scholar 

  • Lefrant JY et al (2002) Regional blood flows are affected differently by PEEP when the abdomen is open or closed: an experimental rabbit model. Canadian Journal of Anesthesia 49(3):302

    Article  PubMed  Google Scholar 

  • Leiner GC et al (1963) Expiratory peak flow rate: standard values for normal subjects. Use as a clinical test of ventilatory function. Am Rev Respir Dis 88(5):644–651

    CAS  PubMed  Google Scholar 

  • Marti S et al (2010) Predictors of mortality in chest wall disease treated with noninvasive home mechanical ventilation. Respir Med 104(12):1843–1849

    Article  PubMed  Google Scholar 

  • McKenzie DK et al (2009) Respiratory muscle function and activation in chronic obstructive pulmonary disease. J Appl Physiol 107(2):621–629

    Article  PubMed  Google Scholar 

  • Mogalle K et al (2016) Quantification of diaphragm mechanics in pompe disease using dynamic 3D MRI. PLoS ONE 11(7):e0158912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oczenski W (2008) Atem und Atemhilfen. Thieme, Stuttgart

    Google Scholar 

  • Onders RP et al (2014) Extended use of diaphragm pacing in patients with unilateral or bilateral diaphragm dysfunction: a new therapeutic option. Surgery 156(4):776–786

    Article  PubMed  Google Scholar 

  • Onders RP et al (2018) Completed FDA feasibility trial of surgically placed temporary diaphragm pacing electrodes: A promising option to prevent and treat respiratory failure. Am J Surg 215(3):518–521

    Article  PubMed  Google Scholar 

  • Patel DS et al (2009) Work of breathing during SIMV with and without pressure support. Arch Dis Child 94(6):434–436

    Article  PubMed  Google Scholar 

  • Pinto S, de Carvalho M (2017) Correlation between forced vital capacity and slow vital capacity for the assessment of respiratory involvement in amyotrophic lateral sclerosis: a prospective study. Amyotrophic Lateral Scler Frontotemporal Degeneration 18(1–2):86–91

    Article  Google Scholar 

  • Pinto S et al (2016) Ultrasound for assessment of diaphragm in ALS. Clin Neurophysiol 127(1):892–897

    Article  PubMed  Google Scholar 

  • Piper AJ, Grunstein RR (2010) Big breathing: the complex interaction of obesity, hypoventilation, weight loss, and respiratory function. J Appl Physiol 108(1):199–205

    Article  PubMed  Google Scholar 

  • Priewe J, Tümmers D (2007) Kompendium Vorklinik – GK1. Springer, Heidelberg

    Book  Google Scholar 

  • Ptok M (2014) Zwerchfell: Aufbau und Zwerchfelldurchtrittsstellen. Sprache Stimme Gehör 38:45–46

    Google Scholar 

  • Ragette R et al (2002) Patterns and predictors of sleep disordered breathing in primary myopathies. Thorax 57(8):724–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rollnik JD et al (2017) Prolonged weaning during early neurological and neurosurgical rehabilitation: S2k guideline published by the Weaning Committee of the German Neurorehabilitation Society (DGNR). Der Nervenarzt 88(6):652–674

    Article  CAS  PubMed  Google Scholar 

  • Rosier S et al (2014) The accuracy of transcutaneous PCO2 in subjects with severe brain injury: a comparison with end-tidal PCO2. Respir Care 59(8):1242–1247

    Article  PubMed  Google Scholar 

  • Sancho J et al (2007) Predictors of ineffective cough during a chest infection in patients with stable amyotrophic lateral sclerosis. Am J Respir Crit Care Med 175(12):1266–1271

    Article  PubMed  Google Scholar 

  • Sarwal A et al (2013) Neuromuscular ultrasound for evaluation of the diaphragm. Muscle Nerve 47(3):319–329

    Article  PubMed  PubMed Central  Google Scholar 

  • Schellhas V et al (2018) Upper airway obstruction induced by non-invasive ventilation using an oronasal interface. Sleep and Breathing 22(3):781–788

    Article  PubMed  Google Scholar 

  • Schlenker E et al (1997) Effect of noninvasive ventilation on pulmonary artery pressure in patients with severe kyphoscoliosis. Medizinische Klinik (Munich, Germany: 1983) 92:40–44

    Article  Google Scholar 

  • Schwarz SB (2017) Continuous non-invasive PCO2 monitoring in weaning patients: transcutaneous is advantageous over end-tidal PCO2. Respirology 22(8):1579–1584

    Article  PubMed  Google Scholar 

  • Severgnini P et al (2013) Protective mechanical ventilation during general anesthesia for open abdominal surgery improves postoperative pulmonary function. Anesthesiol: J Am Soc Anesthesiol 118(6):1307–1321

    Article  CAS  Google Scholar 

  • Sharp JT et al (1986) Diaphragmatic responses to body position changes in obese patients with obstructive sleep apnea. Am Rev Respir Dis 133(1):32–37

    Article  CAS  PubMed  Google Scholar 

  • Shneerson JM, Simonds AK (2002) Noninvasive ventilation for chest wall and neuromuscular disorders. Eur Respir J 20(2):480–487

    Article  CAS  PubMed  Google Scholar 

  • Sieck GC et al (2013) Mechanical properties of respiratory muscles. Compr Physiol 3(4):1533–1567

    Article  Google Scholar 

  • Siobal MS (2016) Monitoring exhaled carbon dioxide. Respir Care 61(10):1397–1416

    Article  PubMed  Google Scholar 

  • Sturm R (2007) Increases in morbid obesity in the USA: 2000–2005. Public Health 121(7):492–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tebb ZD et al (2010) An argument for the conservative management of small traumatic pneumathoraces in populations with high prevalence of HIV and tuberculosis: an evidence-based review of the literature. Int J Emerg Med 3(4):391

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Lunteren E, Strohl KP (1986) The muscles of the upper airways. Clin Chest Med 7(2):171

    PubMed  Google Scholar 

  • Van Marcke C et al (2015) CO2 measurement for the early differential diagnosis of pulmonary embolism-related shock at the emergency department: a case series. Respir Med Case Rep 16:106–108

    PubMed  PubMed Central  Google Scholar 

  • Walker SP et al (2018) Conservative management in traumatic pneumothoraces: an observational study. Chest 153(4):946–953

    Article  PubMed  Google Scholar 

  • Wen S et al (2015) Lung MRI and impairment of diaphragmatic function in Pompe disease. BMC Pulm Med 15(1):54

    Article  Google Scholar 

  • Wilson TA (2016) Respiratory mechanics. Springer, Basel

    Book  Google Scholar 

  • Windisch W et al (2017) Nichtinvasive und invasive Beatmung als Therapie der chronischen respiratorischen Insuffizienz – Revision 2017. Pneumologie 64(04):207–240

    Article  Google Scholar 

  • Wu W et al (2017) Transdiaphragmatic pressure and neural respiratory drive measured during inspiratory muscle training in stable patients with chronic obstructive pulmonary disease. Int J Chronic Obstructive Pulm Dis 12:773

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Groß, M., Summ, O. (2020). Die Atempumpe und ihre Störungen. In: Groß, M. (eds) Neurologische Beatmungsmedizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59014-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-59014-0_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-59013-3

  • Online ISBN: 978-3-662-59014-0

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics