Skip to main content

Neurodegenerative Erkrankungen

  • Chapter
Neurologische Pathophysiologie

Zusammenfassung

Neurodegenerative Erkrankungen sind progredient verlaufende Krankheiten des Nervensystems. In diesem Kapitel werden die drei Hauptformen neurodegenerativer Erkrankungen – die amyotrophe Lateralsklerose (ALS), die Demenzen sowie Parkinson-Syndrome – dargestellt und hinsichtlich ihrer zugrundeliegenden Pathomechanismen besprochen. Grundlegende Veränderungen, wie das Auftreten abnorm gefalteter und aggregierter Proteine, die sich in Zellen des Nervensystems anreichern und zum Funktionsverlust und schließlich Niedergang unterschiedlicher Zellpopulationen führen, werden besprochen. Zudem werden genetische Grundlagen sowie unterschiedliche Hypothesen zur Ausbreitung der Neurodegeneration behandelt und die wesentlichen beteiligten neuroanatomischen Strukturen aufgezeigt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literatur

Literatur zu Abschn. 4.1

  • Berlit P (Hrsg) (2012) Klinische Neurologie 3. Aufl. Springer, Berlin Heidelberg New York, S. 507

    Google Scholar 

  • Braak H, Brettschneider J, Ludolph AC, Lee VM, Trojanowski JQ, Del Tredici K (2013) Amyotrophic lateral sclerosis – a model of corticofugal axonal spread. Nat Rev Neurol 9 (12): 708–14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brettschneider J, Arai K, Del Tredici K et al. (2014) TDP-43 pathology and neuronal loss in amyotrophic lateral sclerosis spinal cord. Acta Neuropathol 128 (3): 423–37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brettschneider J, Del Tredici K, Toledo JB et al. (2013) Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann Neurol 74 (1): 20–38

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiò A, Pagani M, Agosta F, Calvo A, Cistaro A, Filippi M (2014). Neuroimaging in amyotrophic lateral sclerosis: Insights into structural and functional changes. Lancet Neurol 13: 1228–1240

    PubMed  Google Scholar 

  • Dupuis L, Pradat PF, Ludolph AC, Loeffler JP (2011) Energy metabolism in amyotrophic lateral sclerosis. Lancet Neurol 10: 75–82

    CAS  PubMed  Google Scholar 

  • Hacke W (Hrsg) (2016) Neurologie, 14. Auflage. Springer, Berlin Heidelberg New York, Abb. 33.3

    Google Scholar 

  • Geevasinga N, Menon P, Özdinler PH, Kiernan MC, Vucic S (2016) Pathophysiological and diagnostic implications of cortical dysfunction in ALS. Nat Rev Neurol 12 (11): 651–661

    CAS  PubMed  Google Scholar 

  • Hübers A, Ludolph AC, Rosenbohm A, Pinkhardt EH, Weishaupt JH, Dorst J (2016) Amyotrophe Lateralsklerose. Eine Multisystemdegeneration. Nervenarzt 87: 179–188

    Google Scholar 

  • Hübers A, Weishaupt JH, Ludolph AC (2013) Genetik der Amyotrophen Lateralsklerose. Nervenarzt 84: 1213–1219

    PubMed  Google Scholar 

  • Kassubek J, Müller HP, Del Tredici K et al. (2014) Diffusion tensor imaging analysis of sequential spreading of disease in amyotrophic lateral sclerosis confirms patterns of TDP-43 pathology. Brain 137 (Pt 6): 1733–40

    PubMed  Google Scholar 

  • Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, Burrell JR, Zoing MC (2011) Amypotrophic lateral sclerosis. Lancet 377: 942–955

    CAS  Google Scholar 

  • Klöppel G, Kreipe HH, Remmele W, Paulus W Schröder JM (Hrsg.) Neuropathologie 3. Aufl. Springer-Verlag 2011

    Google Scholar 

  • Ludolph AC, Brettschneider J (2015) TDP-43 in amyotrophic lateral sclerosis – is it a prion disease? Eur J Neurol 22: 753–761

    CAS  PubMed  Google Scholar 

  • Neumann M, Sampathu DM et al. (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314 (5796): 130–133

    CAS  PubMed  Google Scholar 

  • Oakes JA, Davies MC, Collins MO (2017) TBK1: a new player in ALS linking autophagy and neuroinflammation. Mol Brain10 (1): 5

    Google Scholar 

  • O’Reilly ÉJ, Wang H, Weisskopf MG, Fitzgerald KC, Falcone G, McCullough ML et al. (2013). Premorbid body mass index and risk of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 14, 205–211

    PubMed  Google Scholar 

  • Ravits J (2014) Focality, stochasticity and neuroanatomic propagation in ALS pathogenesis. Exp Neurol 262: 121–126

    CAS  PubMed  Google Scholar 

  • Renton AE, Chiò A, Traynor BJ (2014) State of play in amyotrophic lateral sclerosis genetics. Nature Neurosci 17: 17–23

    PubMed  PubMed Central  Google Scholar 

  • Remmele W (2012) Neuropathologie, 3. Aufl. Springer, Berlin Heidelberg New York, S. 231

    Google Scholar 

  • Shynrye L, Hyung-Jun K (2014) Prion-like Mechanism in Amyotrophic Lateral Sclerosis: are Protein Aggregates the Key? Exp Neurobiol 24 (1): 1–7

    Google Scholar 

  • Synofzik M, Otto M, Ludolph AC, Weishaupt JH (2017) Genetische Architektur der amyotrophen Lateralsklerose und frontotemporalen Demenz. Überlappung und Unterschiede. Nervenarzt 88: 728–735

    CAS  PubMed  Google Scholar 

  • Tesfaye W. Tefera TW, Borges K (2016) Metabolic Dysfunctions in Amyotrophic Lateral Sclerosis Pathogenesis and Potential Metabolic Treatments. Front Neurosci. 2016; 10: 611

    Google Scholar 

  • Zhang Y (2011) Tunneling-nanotube. A new way of cell-cell communication. Commun Integr Biol 4 (3): 324–325

    CAS  Google Scholar 

Literatur zu Abschn. 4.2

  • American Psychiatric Association – APA (2013). Diagnostic and statistical manual of mental disorders. Arlington: American Psychiatric Publishing

    Google Scholar 

  • Ashford JW (2004) APOE genotype effects on Alzheimer’s disease onset and epidemiology. J Mol Neurosci 23 (3): 157–165

    Google Scholar 

  • Bang J, Spina S, Miller BL (2015) Frontotemporal dementia. Lancet 386 (10004): 1672–1682

    Google Scholar 

  • Bartsch TP (2015) Störungen der Gedächtnisfunktion: Ein Überblick. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Bartsch T, Falkai P (2014) Gedächtnisstörungen: Diagnostik und Rehabilitation, Springer, Berlin Heidelberg New York

    Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82 (4): 239–259

    CAS  PubMed  Google Scholar 

  • Brettschneider J, Del Tredici K, Irwin DJ et al. (2014) Sequential distribution of pTDP-43 pathology in behavioral variant frontotemporal dementia (bvFTD) Acta Neuropathol 127 (3): 423–439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brettschneider J, Del Tredici K, Lee VM,Trojanowski JQ (2015) Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat Rev Neurosci 16 (2): 109–120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dilling H, Mombour W, Schmidt MH; WHO (1991) Internationale Klassifikation psychischer Störungen: ICD-10, Kapitel V (F, klinisch-diagnostische Leitlinien)

    Google Scholar 

  • Goedert M (2015) Neurodegeneration. Alzheimer’s and Parkinson’s diseases: The prion concept in relation to assembled Abeta, tau, and alpha-synuclein. Science 349 (6248): 1255555

    PubMed  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297 (5580): 353–356

    CAS  PubMed  Google Scholar 

  • Heneka MT, Carson MJ, El Khoury J et al. (2015) Neuroinflammation in Alzheimer‹s disease. Lancet Neurol 14 (4): 388–405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Irwin DJ (2016) Tauopathies as clinicopathological entities. Parkinsonism Relat Disord 22 Suppl 1: S29–33

    Google Scholar 

  • Jonsson T, Atwal JK, Steinberg S et al. (2012) A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature 488 (7409): 96–99

    CAS  PubMed  Google Scholar 

  • Jucker M, Walker LC (2013) Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501 (7465): 45–51

    CAS  PubMed  PubMed Central  Google Scholar 

  • Majcher V, Goode A, James V, Layfield R (2015) Autophagy receptor defects and ALS-FTLD. Molecular and Cellular Neuroscience 66: 43–52

    CAS  PubMed  Google Scholar 

  • Schneider F, Fink GR (2013) Funktionelle MRT in Psychiatrie und Neurologie. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Thal DR, Rub U, Orantes M, Braak H (2002) Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 58 (12): 1791–1800

    PubMed  Google Scholar 

  • Walker Z, Possin KL, Boeve BF, Aarsland D (2015) Lewy body dementias. Lancet 386 (10004): 1683–1697

    Google Scholar 

  • Witt K, Deuschl G, Bartsch T (2013) Frontotemporal dementias. Nervenarzt 84 (1): 20–32

    Google Scholar 

Literatur zu Abschn. 4.3

  • Aarsland D, Perry R, Brown A, Larsen JP, Ballard C (2005) Neuropathology of dementia in Parkinson’s disease: a prospective, community-based study. Ann Neurol 58 (5): 773–6

    PubMed  Google Scholar 

  • Adler CH, Beach TG (2016) Neuropathological basis of nonmotor manifestations of Parkinson’s disease. Mov Disord 31 (8): 1114–9

    PubMed  PubMed Central  Google Scholar 

  • Aminian KS, Strafella, AP (2013) Affective disorders in Parkinson’s disease. Current Opinion in Neurology 26 (4): 339–44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Antonini A, DeNotaris R (2004) PET and SPECT functional imaging in Parkinson’s disease. Sleep Med 5 (2): 201–6

    PubMed  Google Scholar 

  • Arai R, Karasawa N, Geffard M, Nagatsu I (1995) L-DOPA is converted to dopamine in serotonergic fibers of the striatum of the rat: a double-labeling immunofluorescence study. Neurosci Lett 11;195 (3): 195–8

    CAS  PubMed  Google Scholar 

  • Attems J and Jellinger KA (2008) The dorsal motor nucleus of the vagus is not an obligatory trigger site of Parkinson’s disease. Neuropathol. Appl. Neurobiol 34 (4): 466–7

    Google Scholar 

  • Barone P, Antonini A, Colosimo C et al. (2009) The PRIAMO study: A multicenter assessment of nonmotor symptoms and their impact on quality of life in Parkinson’s disease. Mov Disord 15;24 (11): 1641–9

    PubMed  Google Scholar 

  • Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K (2004)Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318: 121–134

    PubMed  Google Scholar 

  • Braak H, de Vos RA, Bohl J, Del Tredici K (2006) Gastric a-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett 20;396 (1): 67–72

    CAS  PubMed  Google Scholar 

  • Buddhala C, Loftin SK, Kuley BM, Cairns NJ, Campbell MC, Perlmutter JS (2015) Dopaminergic, serotonergic, and noradrenergic deficits in Parkinson disease. Annals of Clinical Translational Neurology 2 (10): 949–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carta M, Carlsson T, Kirik D, Björklund A (2007) Dopamine released from 5-HT terminals is the cause of L-DOPA-induced dyskinesia in parkinsonian rats. Brain 130 (Pt 7): 1819–33

    PubMed  Google Scholar 

  • Carta M, Carlsson T, Muñoz A, Kirik D, Björklund A (2010) Role of serotonin neurons in the induction of levodopa- and graft-induced dyskinesias in Parkinson’s disease. Mov Disord 25 Suppl 1: 174–9

    PubMed  Google Scholar 

  • Cenci MA, Lundblad M (2006) Post- versus presynaptic plasticity in L-DOPA-induced dyskinesia. J Neurochem 99 (2): 381–92

    CAS  PubMed  Google Scholar 

  • Cersosimo MG, Benarroch EE (2008) Neural control of the gastrointestinal ract: implications for Parkinson disease. Mov Disord 15;23 (8): 1065–75

    PubMed  Google Scholar 

  • Chahine LM, Rebeiz J, Rebeiz JJ et al. (2014) Corticobasal syndrome: Five new things. Neurol Clin Pract 4 (4): 304–312

    Google Scholar 

  • Cho SS, Aminian K, Li C, Lang AE, Houle S, Strafella AP (2017) Fatigue in Parkinson’s disease: The contribution of cerebral metabolic changes. Human Brain Mapping 38 (1): 283–292

    PubMed  PubMed Central  Google Scholar 

  • de Rijk MC, Tzourio C, Breteler MM, Dartigues JF, Amaducci L, Lopez-Pousa S et al. (1997) Prevalence of parkinsonism and Parkinson’s disease in Europe: the EUROPARKINSON Collaborative Study. European Community Concerted Action on the Epidemiology of Parkinson’s disease. J Neurol Neurosurg Psychiatry 1997 62 (1): 10–5

    Google Scholar 

  • Deng H, Wang P, Jankovic J (2017) The genetics of Parkinson disease. Ageing Res Rev 42: 72–85

    CAS  PubMed  Google Scholar 

  • Desplats P, Lee HJ, Bae EJ, Patrick C et al. (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci USA 4;106 (31): 13010–5

    Google Scholar 

  • Dickinson DW (2017) Neuropathology of Parkinson disease. Parkinsonism Relat Disord 46 Suppl 1: 30–33

    Google Scholar 

  • Dickson DW, Bergeron C, Chin SS et al. (2002) Office of Rare Diseases neuropathologic criteria for corticobasal degeneration. J Neuropathol Exp Neurol 61 (11): 935–46

    CAS  Google Scholar 

  • Dilling H, Mombour W, Schmidt M (Hrsg) (2015) ICD-10 – Internationale Klassifikation psychischer Störungen, 10. Aufl. Hogrefe Verlag, Göttingen

    Google Scholar 

  • Doppler K (2017) Dermal phospho-alpha-synuclein deposits confirm REM sleep behaviour disorder as prodromal Parkinson’s disease. Acta Neuropathol 133 (4): 535–545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ehgoetz Martens, KA & Lewis, SJ (2017) Pathology of behavior in PD: What is known and what is not? J Neurol Sci 15;374: 9–16

    PubMed  Google Scholar 

  • Engelender S, Isacson O (2017) The Threshold Theory for Parkinson’s Disease. Trends Neursci 40 (1): 4–14

    CAS  PubMed  Google Scholar 

  • Fahn S, Cohen G (1992) The oxidant stress hypothesis in Parkinson’s disease: evidence supporting it. Ann Neurol 32 (6): 804–12

    CAS  PubMed  Google Scholar 

  • Ferreira D, Guerra A (2015) Depression and Parkinson’s disease: Role of the locus coeruleus. European Psychiatry 30, Suppl 1; 28–31

    Google Scholar 

  • Fitts W, Weintraub D, Massimo L, Chahine L, Chen-Plotkin A, Duda JE (2015) Caregiver report of apathy predicts dementia in Parkinson’s disease. Parkinsonism & Related Disord 21 (8): 992–5

    Google Scholar 

  • Gagnon JF, Bedard MA, Fantini ML, Petit D, Panisset M, Rompré S, Carrier J, Montplaisir J (2002) REM sleep behaviour disorder and REM sleep without atonia in Parkinson’s disease. Neurology 27;59 (4): 585–9

    CAS  PubMed  Google Scholar 

  • Gallagher DA, Schrag A (2012) Psychosis, apathy, depression and anxiety in Parkinson’s disease. Neurobiol Dis 46 (3): 581–9

    PubMed  Google Scholar 

  • Gasser T (2005) Genetics of Parkinson’s Disease. Curr Opin Neurol 18 (4): 363–9

    Google Scholar 

  • Hacke W (Hrsg) (2016) Neurologie, 14. Auflage. Springer, Berlin Heidelberg New York, Abb. 24.1, 33.3

    Google Scholar 

  • Hawkes CH, Del Tredici K, Braak H (2007) Parkinson’s disease: a dual hit hypothesis. Neuropathol Appl Neurobiol 33 (6): 599–614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jellinger KA (2010) Neuropathology in Parkinson’s disease with mild cognitive impairment. Acta Neuropathol 20 (6): 829–30

    PubMed  Google Scholar 

  • Jenner P, Olanow CW (1996) Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 47 (6 Suppl 3): 161–70

    Google Scholar 

  • Kaufmann H, Nahm K, Purohit D, Wolfe D (2004) Autonomic failure as the initial manifestation of Parkinson’s disease and dementia with Lewy bodies. Neurology 28;63 (6): 1093–5

    PubMed  Google Scholar 

  • Langston JW, Ballard P, Irwin I (1983) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 25;219 (4587): 979–80

    CAS  PubMed  Google Scholar 

  • Levy R, Dubois B (2006) Apathy and the functional anatomy of the prefrontal cortexbasal ganglia circuits. Cerebral Cortex 16 (7): 916–28

    PubMed  Google Scholar 

  • Litvan I (2003) Update on epidemiological aspects of progressive supranuclear palsy. Mov Disord 18 Suppl 6: S43–50

    Google Scholar 

  • Liu B, Fang F, Pedersen NL, Tillander A, Ludvigsson JF, Ekbom A, Svenningsson P, Chen H, Wirdefeldt K (2017) Vagotomy and Parkinson disease. A Swedish register-based match-cohort study. Neurology 23;88 (21): 1996–2002

    PubMed  PubMed Central  Google Scholar 

  • Maede T, Nagata K, Yoshida Y, Kannari K (2005) Serotonergic hyperinnervation into the dopaminergic denervated striatum compensates for dopamine conversion from exogenously administered L-DOPA. Brain Res 7;1046 (1–2): 230–3

    Google Scholar 

  • Mena MA, de Yébenes JG (2006) Drug-induced parkinsonism. Expert Opin Drug Saf 5 (6): 759–71

    CAS  PubMed  Google Scholar 

  • Michel PP, Hirsch EC, Agid Y (2002) Parkinson’s disease: cell death mechanisms. Rev Neurol 158 (122): 24–32

    Google Scholar 

  • Mu L, Sobotka S, Chen J et al. (2013) Arizona Parkinson’s Disease Consortium. Parkisnon disease affects peripheral sensory nerves in the pharynx. J Neuropathol Exp Neurol 72 (7): 614–23

    Google Scholar 

  • Nutt JG (2003) Long-term L-DOPA therapy: challenges to our understanding and for the care of people with Parkinson’s disease. Exp Neurol 184 (1): 9–13

    CAS  PubMed  Google Scholar 

  • Obeso JA, Grandas F, Vaamonde J, Luquin MR, Artieda J, Lera G, Rodriguez ME, Martinez-Lage JM (1989) Motor complications associated with chronic levodopa therapy in Parkinson’s disease. Neurology 39 (11 Suppl 2): 11–9

    Google Scholar 

  • Olanow W, Schapira AH, Rascol O (2000) Continuous dopamine-receptor stimulation in early Parkinson’s disease. Trends Neurosci 23 (10 Suppl): 117–26

    CAS  PubMed  Google Scholar 

  • Pauletti C, Mannarelli D, Locuratolo N, Pollini L, Curra A, Marinelli L (2017) Attention in Parkinson’s disease with fatigue: Evidence from the attention network test. J Neural Transmission 124 (3): 335–345

    PubMed  Google Scholar 

  • Postuma RB, Berg D, Stern M et al. (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30 (12): 1591–601

    PubMed  Google Scholar 

  • Remmele W (2012) Neuropathologie, 3. Aufl. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Santiago, RM, Vital, MABF, Sato, MDO, Adam, GP (2016) Depression in Parkinson’s disease is associated with a serotoninergic system change secondary to neuroinflammation. Int J Neurol Neurother 3: 061

    Google Scholar 

  • Schapira AHV, Chaudhuri KR, Jenner P (2017) Non-motor features of Parkinson disease. Nat Rev Neurosci 18 (7): 435–450

    CAS  PubMed  Google Scholar 

  • Sixel-Döring F, Trautmann E, Mollenhauer B, Trenkwalder C (2011) Associated factors for REM sleep behavior disorder in Parkinson disease. Neurology 13;77 (11): 1048–54

    PubMed  Google Scholar 

  • Stern G (2014) Niemann-Pick’s and Gaucher’s diseases. Parkinsonism Relat Disord 20 Suppl 1: 143–6

    Google Scholar 

  • Suzuki M, Sango K, Wada K, Nagai Y (2018) Pathological role of lipid interaction with a-Synuclein in Parkinsons disease. NeurochemInt 3: 197–186 (17)30445-X

    Google Scholar 

  • Svensson E, Horváth-Puhó E, Thomsen RW, Djurhuus JC, Pedersen L, Borghammer P, Sorenson HT (2015) Vagotomy and subsequent risk of Parkinson’s disease. Ann Neurol 78 (4): 522–9

    PubMed  Google Scholar 

  • Tanaka H, Kannari K, Maeda T, Tomiyama M, Suda T, Matsunaga M (1999) Role of serotonergic neurons in L-DOPA-derived extracellular dopamine in the striatum of 6-OHDA-lesioned rats. Neuroreport 25;10 (3): 631–4

    CAS  PubMed  Google Scholar 

  • Tofaris GK, Spillantini MG (2007) Physiological and pathological properties of alpha-synuclein. Cell Life Mol Sci 64 (17): 2194–201

    Google Scholar 

  • Toledo JB, Gopal P, Raible K, Irwin DJ, Brettschneider J, Sedor S (2016) Pathological alpha-synuclein distribution in subjects with coincident Alzheimer’s and Lewy body pathology. Acta Neuropathologica 131 (3): 393–409

    Google Scholar 

  • Weintraub D, Simuni T, Caspell-Garcia C, Coffey C, Lasch S, Siderowf A (2015) Cognitive performance and neuropsychiatric symptoms in early, untreated Parkinson’s disease. Mov Disord 30 (7): 919–27

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A.-S. Biesalski , J. Becktepe , T. Bartsch , C. Franke , A.-S. Biesalski , J. Becktepe , T. Bartsch or C. Franke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Cite this chapter

Biesalski, AS., Becktepe, J., Bartsch, T., Franke, C. (2019). Neurodegenerative Erkrankungen. In: Sturm, D., Biesalski, AS., Höffken, O. (eds) Neurologische Pathophysiologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56784-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56784-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56783-8

  • Online ISBN: 978-3-662-56784-5

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics