Skip to main content

Niedertemperaturplasma: Eigenschaften, Wirkungen und Gerätetechnik

  • Chapter
  • First Online:
Plasmamedizin
  • 1804 Accesses

Zusammenfassung

Dieses Kapitel erläutert die physikalischen Besonderheiten der Niedertemperaturplasmen und gibt einen Einblick in messtechnisch zugängliche Plasmaparameter. Die bislang identifizierten Wirkungen von Niedertemperaturplasmen auf Mikroorganismen, eukaryotische Zellen und Flüssigkeiten werden ebenso erläutert wie die bisherigen Erkenntnisse aus klinischen Studien. Den technischen Quellen zur Plasmaerzeugung kommt für den therapeutischen Einsatz eine Schlüsselrolle zu. Dazu wird in die gängigen technischen Konzepte zur Erzeugung „kalter“ Plasmen bei Atmosphärendruck eingeführt und eine Gliederung in direkte und indirekte Plasmaquellen vorgenommen. Schließlich werden derzeitig verfügbare Medizinprodukte vorgestellt und deren Anwendung illustriert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literatur

  • Babaeva NY, Kushner MJ (2013) Reactive fluxes delivered by dielectric barrier discharge filaments to slightly wounded skin. J Phys D Appl Phys 46: 025401

    Article  Google Scholar 

  • Bekeschus S, Schmidt A, Weltmann K-D, von Woedtke T (2016) The plasma jet kINPen – A powerful tool for wound healing. Clin Plasma Med: im Druck. doi:10.1016/j.cpme.2016.01.001

    Google Scholar 

  • Brehmer F, Haenssle HA, Daeschlein G, Ahmed R, Pfeiffer S, Goerlitz A, Simon D, Schoen MP, Wandke D, Emmert S (2015) Alleviation of chronic venous leg ulcers with a hand-held dielectric barrier discharge plasma generator (PlasmaDerm® VU-2010): results of a monocentric, two-armed, open, prospective, randomized and controlled trial (NCT01415622). J Eur Acad Dermatol Venereol 29: 148–155

    Article  CAS  PubMed  Google Scholar 

  • Bussiahn R, Brandenburg R, Gerling T, Kindel E, Lange H, Lembke N, Weltmann KD, von Woedtke T, Kocher T (2010) The hairline plasma: An intermittent negative dc-corona discharge at atmospheric pressure for plasma medical applications. Appl Phys Lett 96: 143701

    Article  Google Scholar 

  • Bussiahn R, Lembke N, Gesche R, von Woedtke T, Weltmann KD (2013) Plasmaquellen für biomedizinische Applikationen. Hygiene & Medizin 38: 212–216

    Google Scholar 

  • Cooper M, Fridman G, Staack D, Gutsol AF, Vasilets VN, Anandan S, Cho YI, Fridman A, Tsapin A (2009) Decontamination of Surfaces From Extremophile Organisms Using Nonthermal Atmospheric-Pressure Plasmas. IEEE Trans Plasma Sci 37: 866–871

    Article  CAS  Google Scholar 

  • Daeschlein G, Scholz S, von Woedtke T, Niggemeier M, Kindel E, Brandenburg R, Weltmann KD, Jünger M (2011) In Vitro Killing of Clinical Fungal Strains by Low-Temperature Atmospheric-Pressure Plasma Jet. IEEE Trans Plasma Sci 39: 815–821

    Article  Google Scholar 

  • Daeschlein G, Scholz S, Ahmed R, von Woedtke T, Haase H, Niggemeier M, Kindel E, Brandenburg R, Weltmann KD, Juenger M (2012a) Skin decontamination by low-temperature atmospheric pressure plasma jet and dielectric barrier discharge plasma. J Hosp Infect 81: 177–183

    Article  CAS  PubMed  Google Scholar 

  • Daeschlein G, Scholz S, Arnold A, von Podewils S, Haase H, Emmert S, von Woedtke T, Weltmann KD, Juenger M (2012b) In Vitro Susceptibility of Important Skin and Wound Pathogens Against Low Temperature Atmospheric Pressure Plasma Jet (APPJ) and Dielectric Barrier Discharge Plasma (DBD). Plasma Process Polym 9: 380–389

    Article  CAS  Google Scholar 

  • Dang DN, Anwar R, Thomas G, Prasad YD, Boulton AJ, Malik RA (2006) The Biogun. Diabetes Care 29: 1176

    Article  PubMed  Google Scholar 

  • Ehlbeck J, Schnabel U, Polak M, Winter J, von Woedtke T, Brandenburg R, von dem Hagen T, Weltmann KD (2011) Low temperature atmospheric pressure plasma sources for microbial decontamination. J Phys D Appl Phys 44: 013002

    Article  Google Scholar 

  • Eliasson B, Kogelschatz U (1991) Modelling and Applications of Silent Discharge Plasmas. IEEE Trans Plasma Sci 19: 309–323

    Article  Google Scholar 

  • Fluhr JW, Sassning S, Lademann O, Darvin ME, Schanzer S, Kramer A, Richter H, Sterry W, Lademann J (2012) In vivo skin treatment with tissue-tolerable plasma influences skin physiology and antioxidant profile in human stratum corneum. Exp Dermatol 21: 130–134

    Article  PubMed  Google Scholar 

  • Fridman G, Peddinghaus M, Balasubramanian M, Ayan H, Fridman A, Gutsol A, Brooks A (2006) Blood Coagulation and Living Tissue Sterilization by Floating-Electrode Dielectric Barrier Discharge in Air. Plasma Chem Plasma Process 26: 425–442

    Article  CAS  Google Scholar 

  • Gerling T, Hoder T, Brandenburg R, Bussiahn R, Weltmann KD (2013) Influence of the capillary on the ignition of the transient spark discharge. J Phys D Appl Phys 46: 145205

    Article  Google Scholar 

  • Haehnel M, von Woedtke T, Weltmann KD (2010) Influence of the Air Humidity on the Reduction of Bacillus Spores in a Defined Environment at Atmospheric Pressure Using a Dielectric Barrier Surface Discharge. Plasma Process Polym 7: 244–249

    Article  CAS  Google Scholar 

  • Helmke A, Hoffmeister D, Mertens N, Emmert S, Schuette J, Vioel W (2009) The acidification of lipid film surfaces by non-thermal DBD at atmospheric pressure in air. New J Phys 11: 115025

    Article  Google Scholar 

  • Helmke A, Grünig P, Fritz UM, Wandke D, Emmert S, Petersen K, Viöl W (2012) Low-temperature Plasma – a prospective microbicidal Tool. Recent Pat Antiinfect Drug Discov 7: 223–230

    Article  CAS  PubMed  Google Scholar 

  • Helmke A, Mahmoodzada M, Wandke D, Weltmann KD, Viöl W (2013) Impact of electrode design, supply voltage and interelectrode distance on safety aspects of a medical DBD plasma source. Contrib Plasma Phys 53: 623–638

    Article  CAS  Google Scholar 

  • Helmke A, Franck M, Wandke D, Vioel W (2014) Tempo-spatially Resolved Ozone Characteristics during Single-electrode Dielectric Barrier Discharge (SE-DBD) Operation against Metal and Porcine Skin Surfaces. Plasma Med 4: 67–77

    Article  Google Scholar 

  • Heuer K, Hoffmanns MA, Demir E, Baldus S, Volkmar CM, Röhle M, Furchs PC, Awakowicz P, Suschek CV, Opländer C (2015) The topical use of non-thermal dielectric barrier discharge (DBD): nitric oxide related effects on human skin. Nitric Oxide 44: 52–60

    Article  CAS  PubMed  Google Scholar 

  • Isbary G, Morfill G, Schmidt HU, Georgi M, Ramrath K, Heinlin J, Karrer S, Landthaler M, Shimizu T, Steffes B, Bunk W, Monetti R, Zimmermann JL, Pompl R, Stolz W (2010) A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. Br J Dermatol 163: 78–82

    CAS  PubMed  Google Scholar 

  • Isbary G, Heinlin J, Shimizu T, Zimmermann JL, Morfill G, Schmidt HU, Monetti R, Steffes B, Bunk W, Li Y, Klämpfl T, Karrer S, Landthaler M, Stolz W (2012) Successful and safe use of 2 min cold atmospheric argon plasma in chronic wounds: results of a randomized controlled trial. Br J Dermatol 167: 404–410

    Article  CAS  PubMed  Google Scholar 

  • Joshi SG, Paff M, Friedman G, Fridman G, Fridman A, Brooks AD (2010) Control of methicillin-resistant Staphylococcus aureus in planktonic form and biofilms: A biocidal efficacy study of nonthermal dielectric-barrier discharge plasma. Am J Infect Control 38: 293–301

    Article  CAS  PubMed  Google Scholar 

  • Kalghatgi SU, Fridman G, Cooper M, Nagaraj G, Peddinghaus M, Balasubramanian M, Vasilets VN, Gutsol AF, Fridman A, Friedman G (2007) Mechanism of Blood Coagulation by Nonthermal Atmospheric Pressure Dielectric Barrier Discharge Plasma. IEEE Trans Plasma Sci 35: 1559–1566

    Article  CAS  Google Scholar 

  • Kalghatgi S, Friedman G, Fridman A, Clyne AM (2010) Endothelial Cell Proliferation is Enhanced by Low Dose Non-Thermal Plasma Through Fibroblast Growth Factor-2 Release. Ann Biomed Eng 38: 748–757

    Article  PubMed  Google Scholar 

  • Kalghatgi S, Kelly CM, Cerchar E, Torabi B, Alekseev O, Fridman A, Friedman G, Azizkhan-Clifford J (2011) Effects of Non-Thermal Plasma on Mammalian Cells. PLoS ONE 6: e16270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalghatgi S, Fridman A, Azizkhan-Clifford J, Friedman G (2012) DNA Damage in Mammalian Cells by Non-thermal Atmospheric Pressure Microsecond Pulsed Dielectric Barrier Discharge Plasma is not mediated by Ozone. Plasma Process Polym 9: 726–732

    Article  CAS  Google Scholar 

  • Kisch T, Helmke A, Schleusser S, Song J, Liodaki E, Stang FH, Mailaender P, Kraemer R (2016) Improvement of cutaneous microcirculation by cold atmospheric plasma (CAP): Results of a controlled, prospective cohort study. Microvasc Res 104: 55–62

    Article  CAS  PubMed  Google Scholar 

  • Klebes M, Ulrich C, Kluschke F, Patzelt A, Vandersee S, Richter H, Bob A, von Hutten J, Krediet JT, Kramer A, Lademann J, Lange-Asschenfeld B (2015) Combined antibacterial effects of tissue-tolerable plasma and a modern conventional liquid antiseptic on chronic wound treatment. J Biophotonics 8: 382–391

    Article  CAS  PubMed  Google Scholar 

  • Kogelschatz U (2002) Filamentary, patterned, and diffuse barrier discharges. IEEE Trans Plasma Sci 30: 1400–1408

    Article  CAS  Google Scholar 

  • Kuechler A (2009) Hochspannungstechnik. Springer, Heidelberg

    Book  Google Scholar 

  • Kuchenbecker M, Bibinov N, Kaemling A, Wandke D, Awakowicz P, Vioel W (2009) Characterization of DBD plasma source for biomedical applications. J Phys D Appl Phys 42: 045212

    Article  Google Scholar 

  • Laroussi M, Akan T (2007) Arc-Free Atmospheric Pressure Cold Plasma Jets: A Review, Plasma Process Polym 4: 777–788

    Article  CAS  Google Scholar 

  • Laroussi M, Lu X (2005) Room-temperature atmospheric pressure plasma plume for biomedical applications. Appl Phys Lett 87: 113902–113903

    Article  Google Scholar 

  • Metelmann HR, von Woedtke T, Bussiahn R, Weltmann KD, Rieck M, Khalili R, Podmelle F, Waite PD (2012) Experimental Recovery of CO2-Laser Skin Lesions by Plasma Stimulation. Am J Cosmet Surg 29: 52–56

    Article  Google Scholar 

  • Metelmann HR, Vu TT, Do HT, Le TNB, Hoang THA, Phi TTT, Luong TML, Doan VT, Nguyen TTH, Nguyen THM, Nguyen TL, Le DQ, Le TKX, von Woedtke T, Bussiahn R, Weltmann KD, Khalili R, Podmelle R (2013) Scar formation of laser skin lesions after cold atmospheric pressure plasma (CAP) treatment: A clinical long term observation. Clin Plasma Med 1: 30–35

    Article  Google Scholar 

  • Morfill GE, Shimizu T, Steffes B, Schmidt HU (2009) Nosocomial infections: a new approach towards preventive medicine using plasmas. New J Phys 11: 115019

    Article  Google Scholar 

  • Nationales Zentrum für Plasmamedizin (2014) Positionspapier zum Risikopotenzial und zu Anwendungsperspektiven von kaltem Atmosphärendruckplasma in der Medizin. http://www.plasma-medizin.de/nzpm/fileadmin/default/downloads/plasma_positionspapier.pdf. Zugegriffen am: 03.05.2016

  • Oehmigen K, Haehnel M, Brandenburg R, Wilke C, Weltmann KD, von Woedtke T. (2010) The Role of Acidification for Antimicrobial Activity of Atmospheric Pressure Plasma in Liquids. Plasma Process Polym 7: 250–257

    Article  CAS  Google Scholar 

  • Rajasekaran P, Mertmann P, Bibinov N, Wandke D, Viöl W, Awakowicz P (2010) Filamentary and Homogeneous Modes of Dielectric Barrier Discharge (DBD) in Air: Investigation through Plasma Characterization and Simulation of Surface Irradiation. Plasma Process Polym 7: 665–675

    Article  CAS  Google Scholar 

  • Reuter S, Winter J, Iseni S, Peters S, Schmidt-Bleker A, Duennbier M, Schaefer J, Foest R, Weltmann KD (2012) Detection of ozone in a MHz argon plasma bullet jet, Plasma Sources Sci Technol 21: 034015

    Article  Google Scholar 

  • Schmidt-Bleker A, Winter J, Iseni S, Duennbier M, Weltmann KD, Reuter S (2014) Reactive species output of a plasma jet with a shielding gas device – combination of FTIR absorption spectroscopy and gas phase modelling. J Phys D Appl Phys 47: 145201

    Article  Google Scholar 

  • Shimizu T, Steffes B, Pompl R, Jamitzky F, Bunk W, Ramrath K, Georgi M, Stolz W, Schmidt HU, Urayama T, Fujii S, Morfill GE (2008) Characterization of Microwave Plasma Torch for Decontamination. Plasma Process Polym 5: 577–582

    Article  CAS  Google Scholar 

  • Teschke M, Kedzierski J, Finantu-Dinu EG, Korzec D, Engemann J (2005) High-Speed Photographs of a Dielectric Barrier Atmospheric Pressure Plasma Jet. IEEE Trans Plasma Sci 33: 310–311

    Article  Google Scholar 

  • The International Comission on Non-Ionizing Radiation Protection ICNIRP (2004) Guidelines on limits of exposure to ultraviolet radiation of wavelengths between 180 nm and 400 nm (Incoherent optical radiation). Health Phys 87: 171–186

    Article  Google Scholar 

  • Tuemmel S, Mertens N, Wang J, Viöl W (2007) Low Temperature Plasma Treatment of Living Human Cells. Plasma Process Polym 4: 465–469

    Article  Google Scholar 

  • van Veldhuizen EM, Rutgers WR (2002) Pulsed positive corona streamer propagation and branching. J Phys D Appl Phys 35: 2169–2179

    Article  Google Scholar 

  • Verreycken T, van der Horst RM, Sadeghi N, Bruggeman PJ (2013) Absolute calibration of OH density in a nanosecond pulsed plasma filament in atmospheric pressure He-H2O: comparison of independent calibration methods. J Phys D Appl Phys 46: 464004

    Article  Google Scholar 

  • Weltmann KD, Kindel E, von Woedtke T, Haehnel M, Stieber M, Brandenburg R (2010) Atmospheric-pressure plasma sources: Prospective tools for plasma medicine. Pure Appl Chem 82: 1223–1237

    Article  CAS  Google Scholar 

  • Zimmermann JL, Shimizu T, Schmidt HU, Li YF, Morfill GE, Isbary G (2012) Test for bacterial resistance build-up against plasma treatment. New J Phys 14: 073037

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Helmke, A. (2016). Niedertemperaturplasma: Eigenschaften, Wirkungen und Gerätetechnik. In: Metelmann, HR., von Woedtke, T., Weltmann, KD. (eds) Plasmamedizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52645-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52645-3_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52644-6

  • Online ISBN: 978-3-662-52645-3

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics