Skip to main content

Photosynthese als Funktion des Chloroplasten

  • Chapter
  • First Online:
Pflanzenphysiologie
  • 13k Accesses

Zusammenfassung

Die Photosynthese ist der zentrale Energiewandlungsprozess in der Biosphäre, der Lichtenergie in Stoffwechselenergie umsetzt und damit die Lebensgrundlage für alle autotrophen und heterotrophen Organismen schafft. Bereits auf der Entwicklungsstufe der Archaea treten einfache Pigmentmembransysteme auf, welche die zentralen Elemente eines photosynthetischen Energiewandlers aufweisen: ein lichtabsorbierendes Pigment (Bacteriorhodopsin), das elektronische Anregungsenergie in einen transmembranen Protonengradienten (ΔμH+) umsetzen kann, und eine protonengetriebene ATP-Synthase, die ΔμH+ zur Verknüpfung von ADP mit anorganischem Phosphat ausnutzen kann. Dieses Grundprinzip wird in der Thylakoidmembran der Chloroplasten höherer Pflanzen weiter ausgebaut und wesentlich verfeinert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Weiterführende Literatur

  • Adir N (2005) Elucidation of the molecular structures of components of the phycobilisome: Restructuring a giant. Photosynth Res 85: 15–32

    Google Scholar 

  • Allen JF (2003) Cyclic, pseudocyclic and noncyclic photophosphorylation: New links in the chain.Trends Plant Sci 8: 15–19

    Google Scholar 

  • Amunts A, Drory O, Nelson N (2007) The structure of a plant photosystem I supercomplex at 3.4 Å resolution.Nature 447: 58–63

    Google Scholar 

  • Andersson I, Backlund A (2008) Structure and function of Rubisco. Plant Physiol Biochem 46: 275–291

    Google Scholar 

  • Aro E-M, Andersson B (eds) (2001) Regulation of photosynthesis. Advances in photosynthesis and respiration. Kluwer, Dordrecht

    Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu Rev Plant Biol 59: 89–113

    Google Scholar 

  • Calvin M, Bassham JA (1962) The photosynthesis of carbon compounds. Benjamin, New York

    Google Scholar 

  • Chitnis PR (2001) Photosystem I: Function and physiology. Annu Rev Plant Physiol Plant Mol Biol 52: 593–626

    Google Scholar 

  • Emerson R (1958) The quantum yield of photosynthesis. Annu Rev Plant Physiol 9: 1–24

    Google Scholar 

  • Esper B, Badura A, Rögner M (2006) Photosynthesis as a power supply for (bio-)hydrogen production. Trends Plant Sci 11: 543–549

    Google Scholar 

  • Flügge U-I (2000) Metabolite transport across the chloroplast envelope of C3 plants. In: Leegood RC, Sharkey TD, Caemmerer S von (eds) Photosynthesis: Physiology and metabolism. Kluwer, Dordrecht

    Google Scholar 

  • Foyer CH, Ferrario-Méry S,Huber SC (2000) Regulation of carbon fluxes in the cytosol: Coordination of sucrose synthesis, nitrate reduction and organic acid and amino acid biosynthesis. In: siehe Flügge (2000); pp 177–203

    Google Scholar 

  • Frank HA, Young AJ, Britton G, Cogdell RJ (1999) The photochemistry of carotenoids. Kluwer, Dordrecht

    Google Scholar 

  • Govindjee, Gest H (2002/2003) Historical highlights of photosynthesis research I/II. Photosynth Res 73: 1–308/79: 1–450

    Google Scholar 

  • Haldrup A, Jensen PE, Lunde C, Scheller HV (2001) Balance of power: A view of the mechanism of photosynthetic state transitions. Trends Plant Sci 6: 301–305

    Google Scholar 

  • Haraux F, de Kouchkovsky Y (1998) Energy coupling and ATP synthase. Photosynth Res 57: 231–251

    Google Scholar 

  • Harold F (1986) The vital force: A study of bioenergetics. Freeman, New York

    Google Scholar 

  • Horton P,Ruban A (2005) Molecular design of the photosystem II light harvesting antenna: Photosynthesis and photoprotection. J Exp Bot 56: 365–373

    Google Scholar 

  • Iverson TM (2006) Evolution and unique bioenergetic mechanisms in oxygenic photosynthesis. Curr Opin Chem Biol 10: 91–100

    Google Scholar 

  • Ke B (2001) Photosynthesis. Photobiochemistry and Photobiophysics. Adv Photosynth Vol 10, Kluwer, Dordrecht

    Google Scholar 

  • Kopriva S (2006) Regulation of sulfate assimilation in Arabidopsis and beyond. Ann Bot 97: 479–495

    Google Scholar 

  • Kramer DM,Avenson TJ, Edwards GE (2004) Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. Trends Plant Sci 9: 349–357

    Google Scholar 

  • Krause GH,Weis E (1991) Chlorophyll fluorescence and photosynthesis: The basics. Annu Rev Plant Physiol Plant Mol Biol 42: 313–349

    Google Scholar 

  • Lu Y, Sharkey TD (2006) The importance of maltose in transitory starch breakdown. Plant Cell Environ 29: 353–366

    Google Scholar 

  • Martin W, Scheibe R, Schnarrenberger C (2000) The Calvin cycle and its regulation. In: siehe Flügge (2000); pp 9–51

    Google Scholar 

  • Mullineaux CW (2005) Function and evolution of grana. Trends Plant Sci 10: 521–525

    Google Scholar 

  • Nelson N, Yocum CF (2006) Structure and function of photosystems I and II. Annu Rev Plant Biol 57: 521–565

    Google Scholar 

  • Oesterhelt D, Tittor J (1989) Two pumps, one principle: Lightdriven ion transportation in halobacteria. Trends Biochem Sci 14: 57–61

    Google Scholar 

  • Ort DR, Yocum CF (eds) (1999) Oxygenic photosynthesis. The light reactions. Kluwer, Dordrecht

    Google Scholar 

  • Pfannschmidt T (2003) Chloroplast redox signals: How photosynthesis controls its own genes. Trends Plant Sci 8: 33–41

    Google Scholar 

  • Rögner M, Boekema EJ, Barber J (1996) How does photosystem 2 split water– The structural basis of efficient energy conversion. Trends Biochem Sci 21: 44–49

    Google Scholar 

  • Schürmann P, Jacquot J-P (2000) Plant thioredoxin systems revisited. Annu Rev Plant Physiol Plant Mol Biol 51: 371–400

    Google Scholar 

  • Witt HT (1979) Energy conversion in the functional membrane of photosynthesis. Analysis by light pulse and electric pulse methods. The central role of the electric field. Biochim Biophys Acta 505: 355–427

    Google Scholar 

  • Xiong J, Bauer CE (2002) Complex evolution of photosynthesis. Annu Rev Plant Biol 53: 503–521

    Google Scholar 

In Abbildungen und Tabellen zitierte Literatur

  • Allen JF, Forsberg J (2001) Trends Plant Sci 6: 317–326

    Google Scholar 

  • Bassham JA (1971) Science 172: 526–534

    Google Scholar 

  • Bassham JA, Benson AA, Kay LD, Harris AZ,Wilson AT, Calvin M (1954) J Amer Chem Soc 76: 1760–1770

    Google Scholar 

  • Bassham JA, Kirk M (1960) Biochim Biophys Acta 43: 447-464

    Google Scholar 

  • Bassham JA, Kirk M (1968) In: Shibata K, Takamiya A, Jagendorf AT, Fuller RC (eds) Comparative biochemistry and biophysics of photosynthesis. Univ Tokyo Press, Tokyo, pp 365–378

    Google Scholar 

  • Emerson R, Lewis CM (1943) Amer J Bot 30: 165–178

    Google Scholar 

  • Emerson R, Chalmers R, Cederstrand C (1957) Proc Natl Acad Sci USA 43: 133–143

    Google Scholar 

  • Foyer CH, Valadier MH, Ferrario S (1995) In: Smirnoff N (ed) Environment and plant metabolism. Bios Sci, Oxford, pp 17–43

    Google Scholar 

  • French CS, Brown JS, Lawrence MC (1972) Plant Physiol 49: 421–429

    Google Scholar 

  • Gantt E, Conti SF (1966) J Cell Biol 29: 423–434

    Google Scholar 

  • Gantt E, Lipschultz CA (1974) Biochemistry 13: 2960–2966

    Google Scholar 

  • Gantt E, Lipschultz CA, Zilinskas B (1976) Biochim Biophys Acta 430: 375–388

    Google Scholar 

  • Haxo FT (1960) In: Allen MB (ed) Comparative biochemistry of photoreactive systems. Academic Press, New York, pp 339–360

    Google Scholar 

  • Joliot P, Joliot A, Kok B (1968) Biochim Biophys Acta 153: 635–652

    Google Scholar 

  • Junesch U,Gräber P (1987) Biochim Biophys Acta 893: 275–288

    Google Scholar 

  • Ke B (2001) Photosynthesis: Photobiochemistry and Photobiophysics. Kluwer, Dordrecht

    Google Scholar 

  • Kok B (1956) Biochim Biophys Acta 21: 245–258

    Google Scholar 

  • Kreutz W (1966) Umschau 66: 806–813

    Google Scholar 

  • Kühlbrandt W, Wang DN, Fujiyoshi Y (1994) Nature 367: 614–621

    Google Scholar 

  • Lea PJ,Miflin BJ (1974) Nature 251: 614–616

    Google Scholar 

  • Lemasson C, Demarsac NT, Cohen-Bazire G (1973) Proc Natl Acad Sci USA 70: 3130–3133

    Google Scholar 

  • Leustek T, Saito K (1999) Plant Physiol 120: 637–643

    Google Scholar 

  • Menke W (1960) Experientia 16: 537–538

    Google Scholar 

  • Nilsen KN (1971) Hort Science 6: 26–29

    Google Scholar 

  • Oesterhelt D (1974) In: Jaenicke L (ed) Biochemistry of sensory functions. Springer, Berlin, pp 55–77

    Google Scholar 

  • Paolillo DJ (1970) J Cell Sci 6: 243–255

    Google Scholar 

  • Park RB, Pfeifhofer AO (1969) J Cell Sci 5: 299–311

    Google Scholar 

  • Pedersen TA, Kirk M, Bassham JA (1966) Physiol Plant 19: 219–231

    Google Scholar 

  • Pfannschmidt T, Nilsson A, Allen JF (1999) Nature 397: 625–628

    Google Scholar 

  • Rutherford AW, Boussac A (2004) Science 303: 1782–1784

    Google Scholar 

  • Scheibe R (1994) Naturwiss 81: 443–448

    Google Scholar 

  • Schreiber U, Bilger W, Neubauer C (1993) In: Schulze E-D, Caldwell MM (eds) Ecophysiology of photosynthesis. (Ecological Studies,Vol 100). Springer, Berlin, pp 49–70

    Google Scholar 

  • Sidler WA (1994) In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer, Dordrecht, pp 139–216

    Google Scholar 

  • Solomonson LP, Barber MJ (1990) Annu Rev Plant Physiol Plant Mol Biol 41: 225–253

    Google Scholar 

  • Staehelin LA, Van der Staay GWM (1996) In: Ort DR, Yocum CF (eds) Oxygenic photosynthesis: The light reactions: Kluwer, Dordrecht, pp 11–30

    Google Scholar 

  • Wehrmeyer W (1964) Planta 63: 13–30

    Google Scholar 

  • Witt HT (1971) Quarterly Rev Biophys 4: 365–477

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Schopfer .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schopfer, P., Brennicke, A. (2010). Photosynthese als Funktion des Chloroplasten. In: Pflanzenphysiologie. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49880-4_8

Download citation

Publish with us

Policies and ethics