Skip to main content

Eukaryotische Chromosomen

  • Chapter
Genetik
  • 29k Accesses

Zusammenfassung

Die wichtige Rolle der Chromosomen im Zellkern wurde durch die cytologischen Studien der Zellteilung deutlich. Hierbei spielten vor allem Untersuchungen an befruchteten Eiern eine Rolle, wie sie unter anderem von Walther Flemming (1843–1905) und Carl Rabl (1853–1917) durchgeführt wurden. Eine der wichtigsten Erkenntnisse war, dass die Anzahl der Chromosomen während der Zellteilung (Mitose) (Flemming 1882) unverändert bleibt. Etwa gleichzeitig beschrieben Edouard van Beneden (1846–1910), Theodor Boveri (1862–1915), Thomas Harrison Montgomery (1873–1912) und andere Cytologen, dass durch einen besonderen Zellteilungsmechanismus während der Entstehung männlicher und weiblicher Keimzellen eine Halbierung der Anzahl der Chromosomen stattfindet und dass durch die Vereinigung der Keimzellen die ursprüngliche Chromosomenanzahl, wie man sie in somatischen Zellen findet, wiederhergestellt wird. Für diesen besonderen Teilungsmechanismus wurde von J. B. Farmer und E. Moore (1905) der Begriff Meiose eingeführt (Abschn. 6.3.2). Bereits 1885 zieht August Weismann (1834–1914) in seiner berühmten Abhandlung Die Continuität des Keimplasmas als Grundlage einer Theorie der Vererbung einen entscheidenden Schluss aus all diesen Befunden, ohne ihn jedoch mit den Mendel’schen Beobachtungen in Verbindung zu bringen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Arnold AP (2004) Sex chromosomes and brain gender. Nat Rev Neurosci 5:701–708

    Article  CAS  PubMed  Google Scholar 

  • Aubert G, Lansdorp PM (2008) Telomeres and aging. Physiol Rev 88:557–579

    Article  CAS  PubMed  Google Scholar 

  • Aulard S, Monti L, Chaminade N et al. (2004) Mitotic and polytene chromosomes: comparisons between Drosophila melanogaster and Drosophila simulans. Genetica 120:137–150

    Article  CAS  PubMed  Google Scholar 

  • Balbiani EG (1981) Sur la structure du noyau des cellules salivaires chez les larves de Chironomus. Zool Anz 4:637–641

    Google Scholar 

  • Barlow AL, Hultén MA (1996) Combined immunocytogenetic and molecular cytogenetic analysis of meiosis I human spermatocytes. Chrom Res 4:562–573

    Article  CAS  PubMed  Google Scholar 

  • Beadle GW (1946) Genes and the chemistry of the organism. Am Sci 34:31–53

    CAS  PubMed  Google Scholar 

  • Beermann W (1952) Chromosomenkonstanz und spezifische Modifikation der Chromosomenstruktur in der Entwicklung und Organdifferenzierung von Chironomus tentans. Chromosoma 5:139–198

    Article  Google Scholar 

  • Bertuch AA, Lundblad V (2006) The maintenance and masking of chromosome termini. Curr Opin Cell Biol 18:247–253

    Article  CAS  PubMed  Google Scholar 

  • Bischof JM, Chiang AP, Scheetz TE et al. (2006) Genome-wide identification of pseudogenes capable of disease-causing gene conversion. Hum Mutat 27:545–552

    Article  CAS  PubMed  Google Scholar 

  • Bishop DK, Zickler D (2004) Early decision: meiotic crossover interference prior to stable strand exchange and synapsis. Cell 117:9–15

    Article  CAS  PubMed  Google Scholar 

  • Blackburn EH, Greider CW, Szostak JW (2006) Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat Med 12:1133–1138

    Article  CAS  PubMed  Google Scholar 

  • Blasco MA (2005) Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet 6:611–622

    Article  CAS  PubMed  Google Scholar 

  • Boveri T (1888) Zellenstudien II. Die Befruchtung und Teilung des Eies von Ascaris megalocephala. Jena Zeit Naturw 22:685–882

    Google Scholar 

  • Boveri T (1909) Über Geschlechtschromosomen bei Nematoden. Arch Zellf 4:132–141

    Google Scholar 

  • Bromley SE, Gall JG (1987) Transcription of the histone loci on lampbrush chromosomes of the newt Notophthalmus viridescens. Chromosoma 95:396–402

    Article  CAS  PubMed  Google Scholar 

  • Brothman AR, Persons DL, Shaffer LG (2009) Nomenclature evolution: changes in the ISCN from the 2005 to the 2009 edition. Cytogenet Genome Res 127:1–4

    Article  CAS  PubMed  Google Scholar 

  • Camacho JPM, Sharbel TF, Beukeboom LW (2000) B-chromosome evolution. Phil Trans R Soc Lond B 355:163–178

    Article  CAS  Google Scholar 

  • Carle GF, Olsen MV (1985) An electrophoretic karyotype for yeast. Proc Natl Acad Sci USA 82:3756–3760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castro A, Lorca T (2005) Exploring meiotic divisions in Cargèse. Meeting on meiotic divisions and checkpoints. EMBO Rep 6:821–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catez F, Ueda T, Bustin M (2006) Determinants of histone H1 mobility and chromatin binding in living cells. Nat Struct Mol Biol 13:305–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan FL, Wong LH (2012) Transcription in the maintenance of centromere chromatin identity. Nucleic Acids Res 40:11178–11188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JM, Cooper DN, Chuzhanova N et al. (2007) Gene conversion: mechanisms, evolution and human disease. Nat Rev Genet 8:762–775

    Article  CAS  PubMed  Google Scholar 

  • Cohen PE, Pollard JW (2001) Regulation of meiotic recombination and prophase I progression in mammals. Bioessays 23:996–1009

    Article  CAS  PubMed  Google Scholar 

  • Cooke HJ, Smith BA (1986) Variability at the telomeres of the human X/Y pseudoautosomal region. Cold Spring Harb Symp Quant Biol 51:213–219

    Article  CAS  PubMed  Google Scholar 

  • Coop G, Przeworski M (2007) An evolutionary view of human recombination. Nat Rev Genet 8:23–34

    Article  CAS  PubMed  Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territorries, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301

    Article  CAS  PubMed  Google Scholar 

  • Dillon N, Festenstein R (2002) Unravelling heterochromatin: competition between positive and negative factors regulates accessibility. Trends Genet 18:252–258

    Article  CAS  PubMed  Google Scholar 

  • Farmer JB, Moore JES (1905) On the meiotic phase (reduction division) in animals and plants. Quart J Microsc Sci 48:489–557

    Google Scholar 

  • Finch JT, Klug A (1976) Solenoidal model for superstructure in chromatin. Proc Natl Acad Sci USA 73:1897–1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flemming W (1882) Zellsubstanz, Kern und Zelltheilung. F. C. W. Vogel, Leipzig Francis KE, Lam SY, Harrison BD et al. (2007) Pollen tetrad-based visual assay for meiotic recombination in Arabidopsis. Proc Natl Acad Sci USA 104:3913–3918

    Google Scholar 

  • Gall JG (1956) On the submicroscopic structure of chromosomes. Brookhaven Symp Biol 8:17–32

    Google Scholar 

  • Gall JG, Stephenson EC, Erba HP et al. (1981) Histone genes are located at the sphere loci of newt lampbrush chromosome. Chromosoma 84:159–171

    Article  CAS  PubMed  Google Scholar 

  • Gartler SM (2006) The chromosome number in humans: a brief history. Nat Rev Genet 7:655–660

    Article  CAS  PubMed  Google Scholar 

  • Gaut BS, Wright SI, Rizzon C et al. (2007) Recombination: an underappreciated factor in the evolution of plant genomes. Nat Rev Genet 8:77–84

    Article  CAS  PubMed  Google Scholar 

  • Gerbi SA (1986) Unusual chromosome movements in Sciarid flies. In: Hennig W (Hrsg) Results and Problems in Cell Differentiation, Bd. 13. Springer, Berlin, S 71–104

    Google Scholar 

  • Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636

    Article  CAS  PubMed  Google Scholar 

  • Heitz E (1928) Das Heterochromatin der Moose. I. Jb wiss Bot 69:762–818

    Google Scholar 

  • Holliday R (1964) A mechanism for gene conversion in fungi. Genet Res 5:282–304

    Article  Google Scholar 

  • Kossel A (1884) Über Nuclein. Arch Physiol 8:177–178

    Google Scholar 

  • Laskey RA, Honda BM, Mills AD et al. (1978) Nucleosomes are assembled by an acidic protein, which binds histones and transfers them to DNA. Nature 275:416–420

    Article  CAS  PubMed  Google Scholar 

  • Liehr T, Starke H, Heller A et al. (2006) Multicolor fluorescence in situ hybridization (FISH) applied to FISH-banding. Cytogenet Genome Res 114: 240–244

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, West SC (2004) Happy Hollidays: 40th anniversary of the Holliday junction. Nat Rev Mol Cell Biol 5:937–946

    Article  CAS  PubMed  Google Scholar 

  • Livernois AM, Graves JA, Waters PD (2012) The origin and evolution of vertebrate sex chromosomes and dosage compensation. Heredity 108:50–58

    Article  CAS  PubMed  Google Scholar 

  • Luger K, Mäder AW, Richmond RK et al. (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–260

    Article  CAS  PubMed  Google Scholar 

  • Maiato H, Hergert PJ, Moutinho-Pereira S et al. (2006) The ultrastructure of the kinetochore and kinetochore fiber in Drosophila somatic cells. Chromosoma 115:469–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marston AL, Amon A (2004) Meiosis: cell-cycle controls shuffle and deal. Nat Rev Mol Cell Biol 5:983–997

    Article  CAS  PubMed  Google Scholar 

  • Metz CW (1938) Chromosome behaviour, inheritance and sex determination in Sciara. Amer Nat 72:485–520

    Article  Google Scholar 

  • Meyer GF, Hess O, Beermann W (1961) Phasenspezifische Funktionsstrukturen in den Spermatocytenkernen von Drosophila melanogaster und ihre Abhängigkeit vom Y-Chromosom. Chromosoma 12:676–716

    Article  CAS  PubMed  Google Scholar 

  • Miller OJ, Thermann E (2001) Human Chromosomes, 4. Aufl. Springer, New York

    Book  Google Scholar 

  • Morelli MA, Cohen PE (2005) Not all germ cells are created equal: aspects of sexual dimorphism in mammalian meiosis. Reproduction 130:761–781

    Article  CAS  PubMed  Google Scholar 

  • Morgan GT (2002) Lampbrush chromosomes and associated bodies: new insights into principles of nuclear structure and function. Chromosome Res 10:177–200

    Article  CAS  PubMed  Google Scholar 

  • Muller HJ (1930) Types of visible variations induced by X-rays in Drosophila. J Genet 22:299–335

    Article  Google Scholar 

  • Olovnikov OM (1973) A theorie of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol 41:181–190

    Article  CAS  PubMed  Google Scholar 

  • Page SL, Hawley RS (2003) Chromosome choreography: the meiotic ballet. Science 301:785–789

    Article  CAS  PubMed  Google Scholar 

  • Painter TS (1921) The Y-chromosome in mammals. Science 53:503–504

    Article  CAS  PubMed  Google Scholar 

  • Painter TS (1933) A new method for the study of chromosome rearrangements and the plotting of chromosome maps. Science 78:585–586

    Article  CAS  PubMed  Google Scholar 

  • Pawlowski WP, Cande WZ (2005) Coordinating the events of the meiotic prophase. Trends Cell Biol 15:674–681

    Article  CAS  PubMed  Google Scholar 

  • Pelling C (1964) Ribonukleinsäure-Synthese der Riesenchromosomen. Chromosoma 15:71–72

    Article  CAS  PubMed  Google Scholar 

  • Polyakov VY, Zatsepina OV, Kireev II et al. (2006) Structural-functional model of the mitotic chromosome. Biochemistry 71:1–9

    CAS  PubMed  Google Scholar 

  • Quénet D, McNally JG, Dalal Y (2012) Through thick and thin: the conundrum of chromatin fibre folding in vivo. EMBO Rep 13:943–944

    Article  PubMed  PubMed Central  Google Scholar 

  • Rabl K (1885) Über Zelltheilung. Gegenbaurs Morphol Jahrb 10:214–330

    Google Scholar 

  • Robert-Fortel I, Junera HR, Geraud G et al. (1993) Three-dimensional organization of the ribosomal genes and Ag-NOR proteins during interphase and mitosis in PtK1 cells studied by confocal microscopy. Chromosoma 102:146–157

    Article  CAS  PubMed  Google Scholar 

  • Saha A, Wittmeyer J, Cairns BR (2006) Chromatin remodelling: the industrial revolution of DNA around histones. Nat Rev Mol Cell Biol 7:437–447

    Article  CAS  PubMed  Google Scholar 

  • Scheer U (1987) Contributions of electron microscopic spreading preparations (»Miller spreads«) to the analysis of chromosome structure. In: Hennig W (Hrsg) Structure and Function of Eucaryotic Chromosomes. Results and Problems in Cell Differentiation, Bd. 14. Springer, Berlin, S 27–58

    Google Scholar 

  • Schmekel K, Daneholt B (1998) Evidence for close contact between recombination nodules and the central element of the synaptonemal complex. Chromosome Res 6:155–159

    Article  CAS  PubMed  Google Scholar 

  • Schultz J (1936) Variegation in Drosophila and the inert chromosome regions. Proc Natl Acad Sci USA 22:27–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinohara M, Oh SD, Hunter N et al. (2008) Crossover assurance and crossover interference are distinctly regulated by the ZMM proteins during yeast meiosis. Nat Genet 40:299–309

    Article  CAS  PubMed  Google Scholar 

  • van Steensel MAM, Steijlen PM, Maessen-Visch MB (2005) New type of twin spot. Am J Med Genet 133A:108–111

    Article  CAS  PubMed  Google Scholar 

  • Stern C (1936) Somatic crossing over and segregation in Drosophila melanogaster. Genetics 21:625–730

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Ambrose JH, Haughey BS et al. (2012) Deep genome-wide measurement of meiotic gene conversion using tetrad analysis in Arabidopsis thaliana. PLoS Genet 8:e100296–8

    Google Scholar 

  • Takeuchi K, Fukagawa T (2012) Molecular architecture of vertebrate kinetochores. Exp Cell Res 318:1367–1374

    Article  CAS  PubMed  Google Scholar 

  • Taylor JH, Woods PS, Hughes WL (1957) The organization and duplication of chromosomes as revealed by autoradiographic studies using tritiumlabeled thymidine. Proc Natl Acad Sci USA 43:122–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tjio JH, Levan A (1956) The chromosome number of man. Hereditas 42:1–6

    Article  Google Scholar 

  • Verdaasdonk JS, Bloom K (2011) Centromeres: unique chromatin structures that drive chromosome segregation. Nat Rev Mol Cell Biol 12:320–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel F, Motulsky AG (1997) Human Genetics, 3. Aufl. Springer, Berlin

    Book  Google Scholar 

  • Weismann A (1885) Die Continuität des Keimplasmas als Grundlage einer Theorie der Vererbung. Fischer, Jena

    Google Scholar 

  • Wilson EB (1907) The supranumerary chromosomes of Hemiptera. Science 26:870–871

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Graw, J. (2015). Eukaryotische Chromosomen. In: Genetik. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44817-5_6

Download citation

Publish with us

Policies and ethics